【題目】在△ABC中,角A,B,C的對邊分別為a,b,c, asinB+bcosA=c. (Ⅰ)求B;
(Ⅱ)若a=2 c,S△ABC=2 ,求b.
【答案】解:(Ⅰ)由題意得, asinB+bcosA=c, 由正弦定理得 sinAsinB+sinBcosA=sinC
所以 sinAsinB+sinBcosA=sin(A+B),
即 sinAsinB=sinAcosB,
由sinA≠0得, sinB=cosB,則tanB= ,
又0<B<π,所以B=30°.
(Ⅱ)由(Ⅰ)和a=2 c得,
S△ABC= acsinB= c2=2 ,解得c=2,a=4 .
由余弦定理得b2=a2+c2﹣ ac=28,
所以b=2
【解析】(Ⅰ)由正弦定理化簡已知的式子,由內(nèi)角的范圍和特殊角的三角函數(shù)值求出B;(Ⅱ)根據(jù)條件和三角形的面積公式求出c、a,再由余弦定理求出b.
【考點精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關(guān)知識點,需要掌握正弦定理:;余弦定理:;;才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:3x+2y﹣1=0和l2:5x+2y+1=0的交點為A
(1)若直線l3:(a2﹣1)x+ay﹣1=0與l1平行,求實數(shù)a的值;
(2)求經(jīng)過點A,且在兩坐標(biāo)軸上截距相等的直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是等差數(shù)列,滿足,數(shù)列滿足,且為等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點的動直線與拋物線:相交于兩點.當(dāng)直線的斜率是時,.
(1)求拋物線的方程;
(2)設(shè)線段的中垂線在軸上的截距為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在海島A上有一座海拔1千米的山,山頂設(shè)有一個觀察站P,上午11時,測得一輪船在島北偏東30°,俯角為30°的B處,到11時10分又測得該船在島北偏西60°,俯角為60°的C處.
(1)求船的航行速度是每小時多少千米?
(2)又經(jīng)過一段時間后,船到達(dá)海島的正西方向的D處,問此時船距島A有多遠(yuǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓上的點到兩個焦點的距離之和為,短軸長為,直線與橢圓交于、兩點.
(1)求橢圓的方程;
(2)若直線與圓相切,探究是否為定值,如果是定值,請求出該定值;如果不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)一動點與兩定點和連線的斜率之積等于.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)設(shè)直線: ()與軌跡交于、兩點,線段的垂直平分線交軸于點,當(dāng)變化時,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險公司針對企業(yè)職工推出一款意外險產(chǎn)品,每年每人只要交少量保費,發(fā)生意外后可一次性獲賠50萬元.保險公司把職工從事的所有崗位共分為、、三類工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計出三類工種的每賠付頻率如下表(并以此估計賠付概率).
(Ⅰ)根據(jù)規(guī)定,該產(chǎn)品各工種保單的期望利潤都不得超過保費的20%,試分別確定各類工種每張保單保費的上限;
(Ⅱ)某企業(yè)共有職工20000人,從事三類工種的人數(shù)分布比例如圖,老板準(zhǔn)備為全體職工每人購買一份此種保險,并以(Ⅰ)中計算的各類保險上限購買,試估計保險公司在這宗交易中的期望利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com