【題目】如圖,在海島A上有一座海拔1千米的山,山頂設(shè)有一個(gè)觀察站P,上午11時(shí),測(cè)得一輪船在島北偏東30°,俯角為30°的B處,到11時(shí)10分又測(cè)得該船在島北偏西60°,俯角為60°的C處.
(1)求船的航行速度是每小時(shí)多少千米?
(2)又經(jīng)過(guò)一段時(shí)間后,船到達(dá)海島的正西方向的D處,問此時(shí)船距島A有多遠(yuǎn)?

【答案】
(1)解:在Rt△PAB中,∠APB=60°,PA=1,∴AB=

在Rt△PAC中,∠APC=30°,

∴AC=

在△ACB中,∠CAB=30°+60°=90°,

∴BC= = =

則船的航行速度為 ÷ =2 (千米/時(shí))


(2)解:在△ACD、中,∠DAC=90°﹣60°=30°,

sin∠DCA=sin(180°﹣∠ACB)=sin∠ACB= = = ,

sin∠CDA=sin(∠ACB﹣30°)

=sin∠ACBcos30°﹣cos∠ACBsin30°

=

=

由正弦定理得 =

∴AD= = =

故此時(shí)船距島A有 千米


【解析】(1)先Rt△PAB、Rt△PAC中確定AB、AC的長(zhǎng),進(jìn)而求得,∠CAB=30°+60°=90°,最后利用勾股定理求得BC,用里程除以時(shí)間即為船的速度.(2)利用sin∠DCA=sin(180°﹣∠ACB)=sin∠ACB求得sin∠DCA的值,利用sin∠CDA=sin(∠ACB﹣30°)=sin∠ACBcos30°﹣cos∠ACBsin30°求得sin∠CDA的值,進(jìn)而利用正弦定理求得AD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓 , 軸上的動(dòng)點(diǎn) 分別切圓 兩點(diǎn).

(1) ,求切線 的方程;

(2),求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 已知拋物線,過(guò)焦點(diǎn)的動(dòng)直線交拋物線于兩點(diǎn),拋物線在兩點(diǎn)處的切線相交于點(diǎn).)求的值;()求點(diǎn)的縱坐標(biāo);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列中, ,數(shù)列滿足.

(1)求證:數(shù)列是等差數(shù)列,寫出的通項(xiàng)公式;

(2)求數(shù)列的通項(xiàng)公式及數(shù)列中的最大項(xiàng)與最小項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c, asinB+bcosA=c. (Ⅰ)求B;
(Ⅱ)若a=2 c,SABC=2 ,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)四位數(shù)的各位數(shù)字相加和為,則稱該數(shù)為“完美四位數(shù)”,如數(shù)字“”.試問用數(shù)字組成的無(wú)重復(fù)數(shù)字且大于的“完美四位數(shù)”有( )個(gè)

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《數(shù)學(xué)九章》中對(duì)已知三角形三邊長(zhǎng)求三角形的面積的求法填補(bǔ)了我國(guó)傳統(tǒng)數(shù)學(xué)的一個(gè)空白,與著名的海倫公式完全等價(jià),由此可以看出我國(guó)古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隔,開平方得積.”若把以上這段文字寫成公式,即S= .現(xiàn)有周長(zhǎng)為2 + 的△ABC滿足sinA:sinB:sinC=( ﹣1): :( +1),試用以上給出的公式求得△ABC的面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的方程為=1,A、B為橢圓C的左、右頂點(diǎn),P為橢圓C上不同于A、B的動(dòng)點(diǎn),直線x=4與直線PA、PB分別交于M、N兩點(diǎn);若D(7,0),則過(guò)D、M、N三點(diǎn)的圓必過(guò)x軸上不同于點(diǎn)D的定點(diǎn),其坐標(biāo)為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

(1)求的取值范圍.

(2)設(shè)的兩個(gè)極值點(diǎn)為,證明

查看答案和解析>>

同步練習(xí)冊(cè)答案