11.已知復(fù)數(shù)z=i(1-2i)(i為虛數(shù)單位),則z的值為(  )
A.-2+iB.-2-iC.2+iD.2-i

分析 直接利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡(jiǎn)得答案.

解答 解:z=i(1-2i)=-2i2+i=2+i.
故選:C.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)$f(x)=\frac{sinπx}{{({x^2}+1)({x^2}-2x+2)}}$,x∈R.
(Ⅰ)請(qǐng)判斷方程f(x)=0在區(qū)間[-2017,2017]上的根的個(gè)數(shù),并說明理由;
(Ⅱ)判斷f(x)的圖象是否具有對(duì)稱軸,如果有請(qǐng)寫出一個(gè)對(duì)稱軸方程,若不具有對(duì)稱性,請(qǐng)說明理由;
(Ⅲ)求證:$\sum_{i=2}^n{\frac{{f(\frac{2i-1}{2})}}{{sin\frac{2i-1}{2}π}}}<\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)關(guān)于x的方程2x2-ax-2=0的兩根分別為α、β(α<β),函數(shù)$f(x)=\frac{4x-a}{{{x^2}+1}}$
(1)證明f(x)在區(qū)間(α,β)上是增函數(shù);
(2)當(dāng)a為何值時(shí),f(x)在區(qū)間[α,β]上的最大值與最小值之差最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,直角梯形ABCD中,AD⊥DC,AD∥BC,BC=2CD=2AD=2,若將直角梯形繞BC邊旋轉(zhuǎn)一周,則所得幾何體的表面積為(  )
A.3π+$\sqrt{2}$πB.3π+2$\sqrt{2}$πC.6π+2$\sqrt{2}$πD.6π+$\sqrt{2}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,且滿足4Sn=(an+1)2,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{{a}_{n}}{{2}^{n-1}}$,Tn為數(shù)列{bn}的前n項(xiàng)和,求證Tn<6:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=ln(2-x)+ax在區(qū)間(0,1)內(nèi)是增函數(shù),則實(shí)數(shù)a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)求經(jīng)過點(diǎn)P(2$\sqrt{2}$,-$\sqrt{3}$)和Q(-2$\sqrt{3}$,$\sqrt{6}$)的雙曲線的標(biāo)準(zhǔn)方程;
(2)已知雙曲線與橢圓$\frac{{x}^{2}}{27}$+$\frac{{y}^{2}}{36}$=1有共同的焦點(diǎn),且與橢圓相交,其中一個(gè)交點(diǎn)A的縱坐標(biāo)為4,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在希臘數(shù)學(xué)家海倫的著作《測(cè)地術(shù)》中記載了著名的海倫公式,利用三角形的三條邊長(zhǎng)求三角形面積,若三角形的三邊長(zhǎng)為a,b,c,其面積$S=\sqrt{p(p-a)(p-b)(p-c)}$,這里$p=\frac{1}{2}(a+b+c)$.已知在△ABC中,BC=6,AB=2AC,則△ABC面積的最大值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知F1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左,右焦點(diǎn),D,E分別是橢圓C的上頂點(diǎn)和右頂點(diǎn),且S${\;}_{△DE{F}_{2}}$=$\frac{\sqrt{3}}{2}$,離心率e=$\frac{1}{2}$
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)經(jīng)過F2的直線l與橢圓C相交于A,B兩點(diǎn),求$\frac{{|{{F_2}A}||{{F_2}B}|}}{{{S_{△OAB}}}}$的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案