【題目】某家庭記錄了未使用節(jié)水龍頭50天的日用水量數據(單位:m3)和使用了節(jié)水龍頭50天的日用水量數據,得到頻數分布表如下:
未使用節(jié)水龍頭50天的日用水量頻數分布表
日用 水量 | [0,0.1) | [0.1,0.2) | [0.2,0.3) | [0.3,0.4) | [0.4,0.5) | [0.5,0.6) | [0.6,0.7) |
頻數 | 1 | 3 | 2 | 4 | 9 | 26 | 5 |
使用了節(jié)水龍頭50天的日用水量頻數分布表
日用 水量 | [0,0.1) | [0.1,0.2) | [0.2,0.3) | [0.3,0.4) | [0.4,0.5) | [0.5,0.6) |
頻數 | 1 | 5 | 13 | 10 | 16 | 5 |
⑴在答題卡上作出使用了節(jié)水龍頭
⑵估計該家庭使用節(jié)水龍頭后,日用水量小于0.35m3的概率;
⑶估計該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計算,同一組中的數據以這組數據所在區(qū)間中點的值作代表.)
【答案】(1)見解析(2)0.48(3)
【解析】
(1)根據使用了節(jié)水龍頭50天的日用水量頻數分布表能作出使用了節(jié)水龍頭50天的日用水量數據的頻率分布直方圖.
(2)根據頻率分布直方圖能求出該家庭使用節(jié)水龍頭后,日用水量小于0.35m3的概率.
(3)由題意得未使用水龍頭50天的日均水量為0.48,使用節(jié)水龍頭50天的日均用水量為0.35,能此能估計該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水.
(1)
(2)根據以上數據,該家庭使用節(jié)水龍頭后50天日用水量小于0.35m3的頻率為
0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,
因此該家庭使用節(jié)水龍頭后日用水量小于0.35m3的概率的估計值為0.48.
(3)該家庭未使用節(jié)水龍頭50天日用水量的平均數為
.
該家庭使用了節(jié)水龍頭后50天日用水量的平均數為
.
估計使用節(jié)水龍頭后,一年可節(jié)省水.
科目:高中數學 來源: 題型:
【題目】近年來,隨著我國汽車消費水平的提高,二手車流通行業(yè)得到迅猛發(fā)展.某汽車交易市場對2017年成交的二手車交易前的使用時間(以下簡稱“使用時間”)進行統計,得到頻率分布直方圖如圖1.
圖1 圖2
(1)記“在年成交的二手車中隨機選取一輛,該車的使用年限在
”為事件
,試估計
的概率;
(2)根據該汽車交易市場的歷史資料,得到散點圖如圖2,其中(單位:年)表示二手車的使用時間,
(單位:萬元)表示相應的二手車的平均交易價格.由散點圖看出,可采用
作為二手車平均交易價格
關于其使用年限
的回歸方程,相關數據如下表(表中
,
):
①根據回歸方程類型及表中數據,建立關于
的回歸方程;
②該汽車交易市場對使用8年以內(含8年)的二手車收取成交價格的傭金,對使用時間8年以上(不含8年)的二手車收取成交價格
的傭金.在圖1對使用時間的分組中,以各組的區(qū)間中點值代表該組的各個值.若以2017年的數據作為決策依據,計算該汽車交易市場對成交的每輛車收取的平均傭金.
附注:①對于一組數據,其回歸直線
的斜率和截距的最小二乘估計分別為
;
②參考數據:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司訂購了一批樹苗,為了檢測這批樹苗是否合格,從中隨機抽測 株樹苗的高度,經數據處理得到如圖的頻率分布直方圖,起中最高的
株樹苗高度的莖葉圖如圖所示,以這
株樹苗的高度的頻率估計整批樹苗高度的概率.
(1)求這批樹苗的高度高于 米的概率,并求圖19-1中,
,
,
的值;
(2)若從這批樹苗中隨機選取 株,記
為高度在
的樹苗數列,求
的分布列和數學期望.
(3)若變量 滿足
且
,則稱變量
滿足近似于正態(tài)分布
的概率分布.如果這批樹苗的高度滿足近似于正態(tài)分布
的概率分布,則認為這批樹苗是合格的,將順利獲得簽收;否則,公司將拒絕簽收.試問,該批樹苗能否被簽收?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的圓臺中,AC是下底面圓O的直徑,EF是上底面圓O′的直徑,FB是圓臺的一條母線.
(1)已知G,H分別為EC,FB的中點,求證:GH∥平面ABC;
(2)已知EF=FB= AC=2
,AB=BC,求二面角F﹣BC﹣A的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x+a|+|x﹣2|
(1)當a=﹣3時,求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.
(1)若A∪B=A,求實數m的取值范圍;
(2)當x∈Z時,求A的非空真子集的個數;
(3)當x∈R時,若A∩B=,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(.(12分)在一次購物抽獎活動中,假設某10張券中有一等獎獎券1張,可獲價值50元的獎品;有二等獎獎券3張,每張可獲價值10元的獎品;其余6張沒獎。某顧客從此10張獎券中任抽2張,求:
(1)該顧客中獎的概率;
(2)該顧客獲得的獎品總價值X(元)的概率分布列。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com