【題目】已知集合A{x|2≤x≤5}B{x|m1≤x≤2m1}

(1)A∪BA,求實數(shù)m的取值范圍;

(2)x∈Z時,求A的非空真子集的個數(shù);

(3)x∈R時,若A∩B,求實數(shù)m的取值范圍.

【答案】1(3] 2254 3(,2)∪(4,+∞)

【解析】

解:(1)因為A∪BA,所以BA,當B時,m1>2m1,則m<2

B≠時,根據(jù)題意作出如圖所示的數(shù)軸,可得,解得2≤m≤3.

綜上可得,實數(shù)m的取值范圍是(,3]

(2)x∈Z時,A{x|2≤x≤5}{2,-1,0,1,2,3,4,5},共有8個元素,所以A的非空真子集的個數(shù)為282254.

(3)B時,由(1)m<2;當B≠時,根據(jù)題意作出如圖所示的數(shù)軸,

可得

,解得m>4.

綜上可得,實數(shù)m的取值范圍是(,2)∪(4,+∞)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線C 的焦點為F,過F且斜率為的直線l交于A,B兩點,

(1)求的方程;

(2)求過點AB且與的準線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家庭記錄了未使用節(jié)水龍頭50天的日用水量數(shù)據(jù)(單位:m3)和使用了節(jié)水龍頭50天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:

未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表

日用

水量

[0,0.1)

[0.1,0.2)

[0.2,0.3)

[0.3,0.4)

[0.4,0.5)

[0.5,0.6)

[0.6,0.7)

頻數(shù)

1

3

2

4

9

26

5

使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表

日用

水量

[0,0.1)

[0.1,0.2)

[0.2,0.3)

[0.3,0.4)

[0.4,0.5)

[0.5,0.6)

頻數(shù)

1

5

13

10

16

5

⑴在答題卡上作出使用了節(jié)水龍頭50天的日用水量數(shù)據(jù)的頻率分布直方圖:

⑵估計該家庭使用節(jié)水龍頭后,日用水量小于0.35m3的概率;

⑶估計該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集U=R

(1)AB;

(2),求實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù) 的圖象如圖

給出下列四個命題:

①方程有且僅有個根;②方程有且僅有個根;

③方程有且僅有個根;④方程有且僅有個根;

其中正確命題的序號是( )

A. ①②③ B. ②③④ C. ①②④ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ln(x+a)+x2
(1)若當x=﹣1時,f(x)取得極值,求a的值,并討論f(x)的單調(diào)性;
(2)若f(x)存在極值,求a的取值范圍,并證明所有極值之和大于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長為的中點,為線段上的動點,過點的平面截該正方體所得的截面記為,則下列命題正確的是__________(寫出所有正確命題的編號).

①當時,為四邊形;

②當時,為等腰梯形;

③當時,的交點滿足

④存在點,為六邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若不等式1-ax2-4x+6>0的解集是{x|-3<x<1}.

(1)解不等式2x22-ax-a>0;

(2)b為何值時,ax2+bx+30的解集為R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種子培育基地新研發(fā)了兩種型號的種子,從中選出90粒進行發(fā)芽試驗,并根據(jù)結(jié)果對種子進行改良.將試驗結(jié)果匯總整理繪制成如下列聯(lián)表:

(1)列聯(lián)表補充完整,并判斷是否有99%的把握認為發(fā)芽和種子型號有關(guān);

(2)若按照分層抽樣的方式,從不發(fā)芽的種子中任意抽取20粒作為研究小樣本,并從這20粒研究小樣本中任意取出3粒種子,設(shè)取出的型號的種子數(shù)為,求的分布列與期望.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

同步練習(xí)冊答案