【題目】已知函數(shù)

(1)若 在區(qū)間 上是單調函數(shù),求實數(shù)的取值范圍.

(2)求函數(shù)在上的最大值和最小值;

【答案】1; (2)見解析.

【解析】

1)由二次函數(shù)的性質,可得使得函數(shù) 在區(qū)間 上是單調函數(shù),則滿足,即可求解;

(2)由(1),根據(jù)二次函數(shù)的圖象與性質,分類討論,即可求解函數(shù)的最大值和最小值,得到答案.

1)由題意,函數(shù)表示開口向上的拋物線,且對稱軸為

若使得函數(shù) 在區(qū)間 上是單調函數(shù),

則滿足,解得,

即實數(shù)的取值范圍.

(2)由(1)可知,

①當時,即時,函數(shù)的最大值為;

時,即時,函數(shù)的最大值為

②當時,即時,函數(shù)在區(qū)間上單調遞增,所以函數(shù)的最小值為

時,即時,函數(shù)在區(qū)間上單調遞減,在單調遞增,所以函數(shù)的最小值為

時,即時,函數(shù)在區(qū)間上單調遞減,所以函數(shù)的最小值為.

綜上所述:

時,最小值為;最大值為

時,最小值為,函數(shù)的最大值為;

時,最小值為,函數(shù)的最大值為;

時,最小值為,函數(shù)的最大值為;

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax﹣lnx,a∈R.
(1)求函數(shù)f(x)的單調區(qū)間;
(2)當x∈(0,e]時,求g(x)=e2x﹣lnx的最小值;
(3)當x∈(0,e]時,證明:e2x﹣lnx﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=|x+1|﹣|2x﹣4|;
(1)解不等式f(x)≥1;
(2)若對x∈R,都有f(x)+3|x﹣2|>m,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某家庭記錄了未使用節(jié)水龍頭50天的日用水量數(shù)據(jù)(單位:m3)和使用了節(jié)水龍頭50天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:

未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表

日用

水量

[0,0.1)

[0.1,0.2)

[0.2,0.3)

[0.3,0.4)

[0.4,0.5)

[0.5,0.6)

[0.6,0.7)

頻數(shù)

1

3

2

4

9

26

5

使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表

日用

水量

[0,0.1)

[0.1,0.2)

[0.2,0.3)

[0.3,0.4)

[0.4,0.5)

[0.5,0.6)

頻數(shù)

1

5

13

10

16

5

⑴在答題卡上作出使用了節(jié)水龍頭50天的日用水量數(shù)據(jù)的頻率分布直方圖:

⑵估計該家庭使用節(jié)水龍頭后,日用水量小于0.35m3的概率;

⑶估計該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的極坐標方程是.以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程是為參數(shù)).

(Ⅰ)將曲線的極坐標方程化為直角坐標方程;

(Ⅱ)若直線與曲線相交于,兩點,且,求直線的傾斜角的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集U=R

(1)AB;

(2),求實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的函數(shù) 的圖象如圖

給出下列四個命題:

①方程有且僅有個根;②方程有且僅有個根;

③方程有且僅有個根;④方程有且僅有個根;

其中正確命題的序號是( )

A. ①②③ B. ②③④ C. ①②④ D. ①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體的棱長為,的中點,為線段上的動點,過點,,的平面截該正方體所得的截面記為,則下列命題正確的是__________(寫出所有正確命題的編號).

①當時,為四邊形;

②當時,為等腰梯形;

③當時,的交點滿足

④存在點,為六邊形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C,F(xiàn)是⊙O上的兩點,OC⊥AB,過點F作⊙O的切線FD交AB的延長線于點D.連接CF交AB于點E.

(1)求證:DE2=DBDA;
(2)若DB=2,DF=4,試求CE的長.

查看答案和解析>>

同步練習冊答案