2.下列命題中正確命題的個(gè)數(shù)是( 。
①和同一平面垂直的兩個(gè)平面平行;
②和同一平面垂直的兩條直線平行;
③兩條直線與一個(gè)平面所成的角相等,則這兩條直線平行;
④一條直線與兩個(gè)平面所成的角相等,則這兩個(gè)平面平行.
A.0B.1C.2D.3

分析 結(jié)合常見空間幾何體舉反例說明.

解答 解:對(duì)于①,直三棱柱的任意兩個(gè)側(cè)面都與底面垂直,但兩側(cè)面不平行,故①錯(cuò)誤;
對(duì)于②,由線面垂直的性質(zhì)定理可知②正確;
對(duì)于③,圓錐的任意兩條母線與底面的夾角都相等,但圓錐任意兩條母線都不平行,故③錯(cuò)誤;
對(duì)于④,若有一條直線與這兩個(gè)平面所成的角相等,則這兩個(gè)平面平行或相交,故④錯(cuò)誤.
故選B.

點(diǎn)評(píng) 本題考查了空間線面關(guān)系;考查學(xué)生的空間想象能力;注意特殊的線面關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.二階矩陣M對(duì)應(yīng)的變換T將點(diǎn)(-2,1)與(1,0)分別變換成點(diǎn)(3,0)與(1,2).求矩陣M的特征值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若數(shù)列{an}滿足:a1=1,an+1=$\frac{1}{2}$an(n∈N*),則an=$\frac{1}{{2}^{n-1}}$;數(shù)列{an}的前n項(xiàng)和Sn=2-21-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若點(diǎn)A(4,0)與點(diǎn)B(0,2)關(guān)于直線l對(duì)稱,則直線l的斜率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在等差數(shù)列{an}中,已知a3=2,a5+a8=15,則a10=( 。
A.64B.26C.18D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,A(-1,0),B(2,0),C(-1,3),直線BC與y軸的交點(diǎn)為D,過點(diǎn)D的直線l平分△ABC的面積,則直線l的方程為8x-y+2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.安排4名教師到3所不同的農(nóng)村學(xué)校支教,每名教師去1所學(xué)校,每個(gè)學(xué)校至少安排1名教師,則不同的安排方式共有( 。
A.12種B.18種C.24種D.36種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)及其導(dǎo)數(shù)f'(x),若存在x0使得f(x0)=f'(x0),則稱x0是f(x)的一個(gè)“巧值點(diǎn)”.給出下列五個(gè)函數(shù):①f(x)=x2,②f(x)=e-x,③f(x)=lnx,④f(x)=tanx,其中有“巧值點(diǎn)”的函數(shù)的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)f(x)是定義在[-1,1]上的奇函數(shù),f(-1)=-1,且對(duì)任意a,b∈[-1,1],當(dāng)a≠b時(shí),都有$\frac{f(a)-f(b)}{a-b}>0$;
(1)解不等式f$(x-\frac{1}{2})<f(2x-\frac{1}{4})$;
(2)若f(x)≤m2-2km+1對(duì)所有x∈[-1,1],k∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案