10.若點A(4,0)與點B(0,2)關(guān)于直線l對稱,則直線l的斜率為2.

分析 由兩點坐標(biāo)求直線AB的斜率,再由兩直線垂直與斜率的關(guān)系可得直線l的斜率.

解答 解:∵點A(4,0)與點B(0,2)關(guān)于直線l對稱,
∴kl•kAB=-1,
而${k}_{AB}=\frac{2-0}{0-4}=-\frac{1}{2}$,
∴kl=2,
即直線l的斜率為2.
故答案為:2.

點評 本題考查由兩點坐標(biāo)求直線的斜率,考查兩直線垂直與斜率的關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若f(x)=lnx-mx.
(1)討論方程f(x)=0的解的個數(shù);
(2)若f(x1)=f(x2)=0,且x1≠x2,求證:ln$\frac{{x}_{1}+{x}_{2}}{2}$>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知下列命題:
①向量$\overrightarrow{a}$,$\overrightarrow$不共線,則向量$\overrightarrow{a}$+$\overrightarrow$與向量$\overrightarrow{a}$-$\overrightarrow$一定不共線
②對任意向量$\overrightarrow{a}$,$\overrightarrow$,則|$\overrightarrow{a}$-$\overrightarrow$|≥||$\overrightarrow{a}$|-|$\overrightarrow$||恒成立
③在同一平面內(nèi),對兩兩均不共線的向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,若給定單位向量$\overrightarrow$和正數(shù)λ,總存在單位向量$\overrightarrow{c}$和實數(shù)μ,使得$\overrightarrow{a}$=λ$\overrightarrow{c}$+μ$\overrightarrow$
則正確的序號為( 。
A.①②③B.①③C.②③D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=sin2x-2sin2x.
(I)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間.
(II)求函數(shù)f(x)在[-$\frac{π}{2}$,0]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若函數(shù)f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,則ω和φ的值分別是( 。
A.ω=2,φ=$\frac{π}{4}$B.ω=2,φ=-$\frac{π}{4}$C.ω=$\frac{1}{2}$,φ=$\frac{π}{8}$D.ω=$\frac{1}{2}$,φ=-$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}為等比數(shù)列,且a2=1,a5=27,{bn}為等差數(shù)列,且b1=a3,b4=a4
(I)分別求數(shù)列{an},{bn}的通項公式.
(II)設(shè)數(shù)列{bn}的前n項和為Sn,求數(shù)列{$\frac{2}{{S}_{n}}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列命題中正確命題的個數(shù)是( 。
①和同一平面垂直的兩個平面平行;
②和同一平面垂直的兩條直線平行;
③兩條直線與一個平面所成的角相等,則這兩條直線平行;
④一條直線與兩個平面所成的角相等,則這兩個平面平行.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x),且f(0)=1,則不等式f(x)<ex的解集為(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知x,y滿足不等式組$\left\{\begin{array}{l}x-y+2≥0\\ 2x-y≤0\\ x≥0\end{array}\right.$,則z=2y-x的最大值為6.

查看答案和解析>>

同步練習(xí)冊答案