如圖所示,設P是拋物線C1:x2=y上的動點,過點P作圓C2:x2+(y+3)2=1的兩條切線,交直線l:y=-3于A、B兩點.
(1)求圓C2的圓心M到拋物線C1準線的距離;
(2)是否存在點P,使線段AB被拋物線C1在點P處的切線平分?若存在,求出點P的坐標;若不存在,請說明理由.
解:(1)因為拋物線C1的準線方程為y=-,
所以圓心M到拋物線C1的準線的距離為
=.
(2)設點P的坐標為(x0, ),拋物線C1在點P處的切線交直線l于點D.
再設A,B,D的橫坐標分別為xA,xB,xD,
過點P(x0, )的拋物線C1的切線方程為
y-=2x0(x-x0).①
當x0=1時,過點P(1,1)與圓C2相切的直線PA的方程為
y-1=(x-1).
可得xA=-,xB=1,xD=-1,xA+xB≠2xD.
當x0=-1時,過點P(-1,1)與圓C2相切的直線PB的方程為y-1=-(x+1),
可得xA=-1,xB=,xD=1,xA+xB≠2xD,
所以-1≠0.
設切線PA、PB的斜率為k1,k2,
則PA:y-=k1(x-x0),②
PB:y-=k2(x-x0),③
將y=-3分別代入①②③得
xD= (x0≠0),
xA=x0-,
xB=x0-(k1,k2≠0),
∴xA+xB=2x0-(+3)(+ ).
又=1,
即(-1) -2(+3)x0k1+(+3)2-1=0.
同理,( -1) -2(+3)x0k2+(+3)2-1=0.
∴k1、k2是方程(-1)k2-2(+3)x0k+(+3)2-1=0的兩個不相等的根,
從而k1+k2=,
k1·k2=.
因為xA+xB=2xD,
所以2x0-(3+)(+)=,
即+=.
從而=,
進而得=8,
所以x0=±.
綜上所述,存在點P滿足題意,點P的坐標為(±,2).
科目:高中數(shù)學 來源: 題型:
等軸雙曲線C的中心在原點,焦點在x軸上,C與拋物線y2=16x的準線交于A、B兩點,|AB|=4,則C的實軸長為( )
(A) (B)2 (C)4 (D)8
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知橢圓+=1(a>b>0)與拋物線y2=2px(p>0)有相同的焦點,P、Q是橢圓與拋物線的交點,若PQ經(jīng)過焦點F,則橢圓+=1(a>b>0)的離心率為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知拋物線的頂點在原點,焦點在x軸的正半軸上,若拋物線的準線與雙曲線5x2-y2=20的兩條漸近線圍成的三角形的面積等于4,則拋物線的方程為( )
(A)y2=4x (B)x2=4y
(C)y2=8x (D)x2=8y
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
某校高一(4)班有男生28人,女生21人,用分層抽樣的方法從全體學生中抽取一個調查小組,調查該校學生對2013年元月1日起執(zhí)行的新交規(guī)的知曉情況,已知某男生被抽中的概率為,則抽取的女生人數(shù)為( )
A.1 B.3 C.4 D.7
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com