20.(1-x)3(1-$\frac{1}{x}$)3展開(kāi)式中的常數(shù)項(xiàng)是( 。
A.20B.6C.-15D.-20

分析 把(1-x)3(1-$\frac{1}{x}$)3 按照二項(xiàng)式定理展開(kāi),可得它的開(kāi)式中的通項(xiàng)常數(shù)項(xiàng).

解答 解:∵(1-x)3(1-$\frac{1}{x}$)3=(${C}_{3}^{0}$+${C}_{3}^{1}$•(-x)+${C}_{3}^{2}$•(-x)2+${C}_{3}^{3}$•(-x)3
•(${C}_{3}^{0}$+${C}_{3}^{1}$•(-$\frac{1}{x}$)+${C}_{3}^{2}$•${(-\frac{1}{x})}^{2}$+${C}_{3}^{3}$•${(-\frac{1}{x})}^{3}$,
故它的開(kāi)式中的通項(xiàng)常數(shù)項(xiàng)為1+3×3+3×3+1=20,
故選:A.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.平面四邊形ABCD中,根據(jù)向量關(guān)系( 。,可推知其為平行四邊形.
A.$\overrightarrow{AB}$=2$\overrightarrow{DC}$B.$\overrightarrow{AB}$=-$\overrightarrow{CD}$C.|$\overrightarrow{AB}$|=|$\overrightarrow{DC}$|D.|$\overrightarrow{AB}$|=|$\overrightarrow{BC}$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知向量$\overrightarrow{a}$=(m,4),$\overrightarrow$=(m+4,1),若$\overrightarrow{a}$⊥$\overrightarrow$,則實(shí)數(shù)m=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.f(x)=$\frac{1}{2}$sin(2x-$\frac{π}{3}$)+$\frac{{\sqrt{3}}}{2}$cos(2x-$\frac{π}{3}$)是( 。
A.最小正周期為2π的偶函數(shù)B.最小正周期為2π的奇函數(shù)
C.最小正周期為 π的偶函數(shù)D.最小正周期為 π的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知a,b∈(0,+∞),則下列不等式中不成立的是( 。
A.a+b+$\frac{1}{\sqrt{ab}}$≥2$\sqrt{2}$B.(a+b)($\frac{1}{a}$+$\frac{1}$)≥4C.$\frac{{a}^{2}+^{2}}{\sqrt{ab}}$≥2$\sqrt{ab}$D.$\frac{2ab}{a+b}$>$\sqrt{ab}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知集合U={1,2,3,4},A={2,4},B={1,3},則(∁UA)∩B等于( 。
A.{1,3}B.{2,4}C.{1,2,3}D.{1,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.一個(gè)空間幾何體的三視圖如圖所示,則該幾何體的表面積為48+8$\sqrt{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.解關(guān)于x的不等式x2+(m-m2)x-m3>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.等比數(shù)列{an}中,a1=-27,q=-$\frac{1}{3}$,Sn=-20,求n,an

查看答案和解析>>

同步練習(xí)冊(cè)答案