【題目】設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,下列命題中正確的是( )
A.若α⊥β,mα,nβ,則m⊥n
B.若α∥β,mα,nβ,則m∥n
C.若m⊥n,mα,nβ,則α⊥β
D.若m⊥α,m∥n,n∥β,則α⊥β
【答案】D
【解析】解:選項(xiàng)A,若α⊥β,mα,nβ,則可能m⊥n,m∥n,或m,n異面,故A錯(cuò)誤;
選項(xiàng)B,若α∥β,mα,nβ,則m∥n,或m,n異面,故B錯(cuò)誤;
選項(xiàng)C,若m⊥n,mα,nβ,則α與β可能相交,也可能平行,故C錯(cuò)誤;
選項(xiàng)D,若m⊥α,m∥n,則n⊥α,再由n∥β可得α⊥β,故D正確.
故選D.
【考點(diǎn)精析】掌握命題的真假判斷與應(yīng)用和空間中直線與平面之間的位置關(guān)系是解答本題的根本,需要知道兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系;直線在平面內(nèi)—有無數(shù)個(gè)公共點(diǎn);直線與平面相交—有且只有一個(gè)公共點(diǎn);直線在平面平行—沒有公共點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下可用來分析身高與體重間關(guān)系的是( )
A.殘差圖
B.回歸分析
C.等高條形圖
D.獨(dú)立性檢驗(yàn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】實(shí)驗(yàn)杯足球賽采用七人制淘汰賽規(guī)則,某場比賽中一班與二班在常規(guī)時(shí)間內(nèi)戰(zhàn)平,直接進(jìn)入點(diǎn)球決勝環(huán)節(jié),在點(diǎn)球決勝環(huán)節(jié)中,雙方首先輪流罰點(diǎn)球三輪,罰中更多點(diǎn)球的球隊(duì)獲勝;若雙方在三輪罰球中未分勝負(fù),則需要進(jìn)行一對一的點(diǎn)球決勝,即雙方各派出一名隊(duì)員罰點(diǎn)球,直至分出勝負(fù);在前三輪罰球中,若某一時(shí)刻勝負(fù)已分,尚未出場的隊(duì)員無需出場罰球(例如一班在先罰球的情況下,一班前兩輪均命中,二班前兩輪未能命中,則一班、二班的第三位同學(xué)無需出場),由于一班同學(xué)平時(shí)踢球熱情較高,每位隊(duì)員罰點(diǎn)球的命中率都能達(dá)到0.8,而二班隊(duì)員的點(diǎn)球命中率只有0.5,比賽時(shí)通過抽簽決定一班在每一輪都先罰球.
(1)定義事件A為“一班第三位同學(xué)沒能出場罰球”,求事件A發(fā)生的概率;
(2)若兩隊(duì)在前三輪點(diǎn)球結(jié)束后打平,則進(jìn)入一對一點(diǎn)球決勝,一對一點(diǎn)球決勝由沒有在之前點(diǎn)球大戰(zhàn)中出場過的隊(duì)員主罰點(diǎn)球,若在一對一點(diǎn)球決勝的某一輪中,某隊(duì)隊(duì)員射入點(diǎn)球且另一隊(duì)隊(duì)員未能射入,則比賽結(jié)束;若兩名隊(duì)員均射入或者均射失點(diǎn)球,則進(jìn)行下一輪比賽.若直至雙方場上每名隊(duì)員都已經(jīng)出場罰球,則比賽亦結(jié)束,雙方用過抽簽決定勝負(fù),以隨機(jī)變量X記錄雙方進(jìn)行一對一點(diǎn)球決勝的輪數(shù),求X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三位同學(xué)同時(shí)參加M項(xiàng)體育比賽,每項(xiàng)比賽第一名、第二名、第三名得分分別為p1 , p2 , p3(p1>p2>p3 , p1 , p2 , p3∈N*,比賽沒有并列名次),比賽結(jié)果甲得22分,乙、丙都得9分,且乙有一項(xiàng)得第一名,則M的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合P=(﹣∞,0]∪(3,+∞),Q={0,1,2,3},則(RP)∩Q=( )
A.{0,1}
B.{0,1,2}
C.{1,2,3}
D.{x|0≤x<3}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:對任意x∈R,總有2x>0;q:“x>1”是“x>2”的充分不必要條件,則下列命題為真命題的是( )
A.p∧q
B.¬p∧¬q
C.¬p∧q
D.p∧¬q
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com