19.某空間幾何體的三視圖如圖所示,則該幾何體的體積是4.   

分析 由已知中的三視圖可得:該幾何體是一個以俯視圖為底面的四棱錐,代入錐體體積公式,可得答案.

解答 解:由已知中的三視圖可得:該幾何體是一個以俯視圖為底面的四棱錐,
故體積V=$\frac{1}{3}Sh$=$\frac{1}{3}$×$\frac{1}{2}$×(2+4)×2×2=4,
故答案為:4

點(diǎn)評 本題考查的知識點(diǎn)是棱錐的體積和表面積,簡單幾何體的三視圖,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=2x3-3ax2+1(x∈R).
(1)若f(x)在x=2處取得極值,求實(shí)數(shù)a的值;
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)求函數(shù)f(x)在閉區(qū)間[0,2]的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在數(shù)列{an}中,a1=-$\frac{1}{4}$,an=1-$\frac{1}{{a}_{n-1}}$(n>1),則a2016的值為( 。
A.-$\frac{1}{4}$B.5C.$\frac{4}{5}$D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.根據(jù)表格中的數(shù)據(jù)用最小二乘法計算出變量x、y的線性回歸方程為$\stackrel{∧}{y}$=3x-$\frac{3}{2}$,則表格中m的值是(  )
x0123
y-118m
A.4B.$\frac{9}{2}$C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x≥0\\ y≥0\\ x+2y≤6\\ 3x+y≤12\end{array}\right.$,且x,y∈Z,則z=2x+y的最大值是( 。
A.7B.8C.$\frac{42}{5}$D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖所示的程序框圖的算法思路源于我國古代數(shù)學(xué)中的秦九韶算法,執(zhí)行該程序框圖,則輸出的結(jié)果S表示的值為(  )
A.a0+a1+a2+a3B.(a0+a1+a2+a3)x3
C.a0+a1x+a2x2+a3x3D.a0x3+a1x2+a2x+a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若a,b∈N,則$\frac{1}{a}$+$\frac{1}$>1成立的充要條件是( 。
A.a,b都不大于2B.a,b中至少有一個等于1
C.a,b都大于2D.a,b中至多有一個等于1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)x>0,當(dāng)x=4時,x+$\frac{16}{x}$有最小值,最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.以下是某地搜集到的新房屋的銷售價格y和房屋的面積x的數(shù)據(jù)
房屋面積(平方米)11511080135105
銷售價格(萬元)24.821.618.429.222
(1)畫出散點(diǎn)圖
(2)求線性回歸方程
(3)根據(jù)(2)的結(jié)果估計房屋面積為150平方米時的銷售價格.

查看答案和解析>>

同步練習(xí)冊答案