分析 (1)首先由題意畫出示意圖,求出圖上距離AB;
(2)然后解三角形AOC,利用余弦定理求出OC長度,在三角形COD中求∠COD的正切即可.
解答 解:(1)由題意如圖,|AB|=$\sqrt{(2+3)^{2}+{5}^{2}}=5\sqrt{2}$,
所以此人行走了500$\sqrt{2}$m,在出發(fā)點的西偏北45°方向,速度是50$\sqrt{2}$m/min;
(2)由(1)可得AC的實際距離為300$\sqrt{2}$m,圖上距離為3$\sqrt{2}$,
在三角形OAC中,OC2=OA2+AC2-2OA•AC•cos45°=4+18-2×2×3$\sqrt{2}$×$\frac{\sqrt{2}}{2}$=10,所以O(shè)C=$\sqrt{10}$;
由AC:AB=CD:BE=3:5,得到CD=3,所以tan∠AOC=-$\frac{CD}{OD}$=-3,所以∠COD=90°-18°26'=71°34';
所以少年宮C點相對于廣場中心西偏北71°34',距離O為100$\sqrt{10}$m.
點評 本題考查了解三角形在實際中的應(yīng)用;正確畫出示意圖,利用余弦定理解三角形,求出OC長度是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | b<c<a | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$-$\frac{1}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | $\frac{π}{2}$+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com