【題目】(導(dǎo)學(xué)號(hào):05856289)[選修4-4:坐標(biāo)系與參數(shù)方程]
直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2(sinθ+cosθ),直線l的參數(shù)方程為: (t為參數(shù)) .
(Ⅰ)寫出圓C和直線l的普通方程;
(Ⅱ)點(diǎn)P為圓C上動(dòng)點(diǎn),求點(diǎn)P到直線l的距離的最小值.
【答案】(1) (x-1)2+(y-1)2=2 , x-y-3=0 (2)
【解析】試題分析:(Ⅰ)由已知圓C的極坐標(biāo)方程為ρ=2(sinθ+cosθ),即ρ2=2ρ(sinθ+cosθ),利用極坐標(biāo)與直角坐標(biāo)互化公式可得直角坐標(biāo)方程.由直線l的參數(shù)方程為: (t為參數(shù)),消去參數(shù)t可得普通方程.
(Ⅱ)由圓的幾何性質(zhì)知點(diǎn)P到直線l的距離的最小值為圓心C到直線l的距離減去圓的半徑,利用點(diǎn)到直線的距離公式可得圓心C到直線l的距離為d,進(jìn)而得出.
試題解析:
(Ⅰ)由已知ρ=2(sinθ+cosθ)得
ρ2=2(ρsinθ+ρcosθ),
所以x2+y2=2y+2x,即圓C的普通方程為:(x-1)2+(y-1)2=2.
由得y=-1+(x-2),所以直線l的普通方程為x-y-3=0.
(Ⅱ)由圓的幾何性質(zhì)知點(diǎn)P到直線l的距離的最小值為圓心C到直線l的距離減去圓的半徑,
令圓心C到直線l的距離為d,
則d==>,
所以最小值為-=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 且.
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),試判斷函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機(jī)構(gòu)用簡單隨機(jī)抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如下表.
非一線 | 一線 | 總計(jì) | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
總計(jì) | 58 | 42 | 100 |
由K2=,得K2=.
參照下表,
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
正確的結(jié)論是( )
A. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“生育意愿與城市級(jí)別有關(guān)”
B. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“生育意愿與城市級(jí)別無關(guān)”
C. 有99%以上的把握認(rèn)為“生育意愿與城市級(jí)別有關(guān)”
D. 有99%以上的把握認(rèn)為“生育意愿與城市級(jí)別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=2,E在DC邊上,且DE=1,將△ADE沿AE折到△AD′E的位置,使得平面AD′E⊥平面ABCE.
(1)求證:AE⊥BD′;
(2)求三棱錐A-BCD′的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856284)
在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知c=b(1+2cosA).
(Ⅰ)求證:A=2B;
(Ⅱ)若a=,B=,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,設(shè)圓:=4 cos 與直線l:= (∈R)交于A,B兩點(diǎn).
(Ⅰ)求以AB為直徑的圓的極坐標(biāo)方程;
(Ⅱ)在圓任取一點(diǎn),在圓上任取一點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省高考改革實(shí)施方案指出:該省高考考生總成績將由語文、數(shù)學(xué)、外語3門統(tǒng)一高考成績和學(xué)生自主選擇的學(xué)業(yè)水平等級(jí)性考試科目共同構(gòu)成.該省教育廳為了解正就讀高中的學(xué)生家長對(duì)高考改革方案所持的贊成態(tài)度,隨機(jī)從中抽取了100名城鄉(xiāng)家長作為樣本進(jìn)行調(diào)查,調(diào)查結(jié)果顯示樣本中有25人持不贊成意見.下面是根據(jù)樣本的調(diào)查結(jié)果繪制的等高條形圖.
(1)根據(jù)已知條件與等高條形圖完成下面的2×2列聯(lián)表,并判斷我們能否有95%的把握認(rèn)為“贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”?
贊成 | 不贊成 | 合計(jì) | |||||
城鎮(zhèn)居民 | |||||||
農(nóng)村居民 | |||||||
合計(jì) | |||||||
P(K2≥k0) | 0.10 | 0.05 | 0.005 | ||||
k0 | 2.706 | 3.841 | 7.879 | ||||
注: 其中
(2)用樣本的頻率估計(jì)概率,若隨機(jī)在全省不贊成高考改革的家長中抽取3個(gè),記這3個(gè)家長中是城鎮(zhèn)戶口的人數(shù)為x,試求x的分布列及數(shù)學(xué)期望E(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018屆江蘇省泰州中學(xué)高三12月月考】已知橢圓的中心為坐標(biāo)原點(diǎn),橢圓短軸長為,動(dòng)點(diǎn)()在橢圓的準(zhǔn)線上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以為直徑且被直線截得的弦長為的圓的方程;
(3)設(shè)是橢圓的右焦點(diǎn),過點(diǎn)作的垂線與以為直徑的圓交于點(diǎn),求證:線段的長為定值,并求出這個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=(m2-m-1)·是冪函數(shù),對(duì)任意x1,x2∈(0,+∞)且x1≠x2,滿足,若a,b∈R且a+b>0,ab<0,則f(a)+f(b)的值( )
A. 恒大于0 B. 恒小于0
C. 等于0 D. 無法判斷
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com