6.已知函數(shù)f(x)=|x|+|x-1|.
(Ⅰ)若f(x)≥|m-1|恒成立,求實數(shù)m的最大值M;
(Ⅱ)在(Ⅰ)成立的條件下,正實數(shù)a,b滿足a2+b2=M,證明:a+b≥2ab.

分析 ( I)求出函數(shù)的解析式,然后求解函數(shù)的最小值,通過|m-1|≤1,求解m的范圍,得到m的最大值M.
( II)法一:綜合法,利用基本不等式證明即可.
法二:利用分析法,證明不等式成立的充分條件即可.

解答 解:( I)由已知可得$f(x)=\left\{\begin{array}{l}1-2x,{\;}x<0\\ 1,{\;}0≤x<1\\ 2x-1,{\;}x≥1\end{array}\right.$,
所以fmin(x)=1,…(3分)
所以只需|m-1|≤1,解得-1≤m-1≤1,∴0≤m≤2,
所以實數(shù)m的最大值M=2…(5分)
( II)法一:綜合法
∴ab≤1∴$\sqrt{ab}≤1$,當(dāng)且僅當(dāng)a=b時取等號,①…(7分)
又∴$\frac{{\sqrt{ab}}}{a+b}≤\frac{1}{2}$∴$\frac{ab}{a+b}≤\frac{{\sqrt{ab}}}{2}$,當(dāng)且僅當(dāng)a=b時取等號,②…(9分)
由①②得,∴$\frac{ab}{a+b}≤\frac{1}{2}$,所以a+b≥2ab…(10分)
法二:分析法因為a>0,b>0,
所以要證a+b≥2ab,只需證(a+b)2≥4a2b2,
即證a2+b2+2ab≥4a2b2,
,所以只要證2+2ab≥4a2b2,…(7分)
即證2(ab)2-ab-1≤0,
即證(2ab+1)(ab-1)≤0,因為2ab+1>0,所以只需證ab≤1,
下證ab≤1,
因為2=a2+b2≥2ab,所以ab≤1成立,
所以a+b≥2ab…(10分)

點評 本題考查函數(shù)的最值的求法,基本不等式的應(yīng)用,考查分析法與綜合法的應(yīng)用,考查邏輯推理能力以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{lg(x+1),x≥0}\\{-{x}^{3},x<0}\end{array}\right.$,則使得f(x)≤1成立的x的取值范圍是[-1,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}(x+3),x≥0\\{x^2},x<0\end{array}\right.$則f(f(-1))=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù):
(1)y=sin3x+3sinx;
(2)y=$\frac{1}{{e}^{x}+1}$-$\frac{1}{2}$;
(3)y=lg$\frac{1-x}{1+x}$;
(4)y=$\left\{\begin{array}{l}{-x+1,x≤0}\\{-x-1,x<0}\end{array}\right.$;
其中是奇函數(shù)且在(0,1)上是減函數(shù)的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)集合$M=\left\{{(x,y)\left|{y=\sqrt{1-{x^2}}}\right.}\right\}$,N={(x,y)|y=k(x-b)+1},若對任意的0≤k≤1都有M∩N≠∅,則實數(shù)b的取值范圍是1-$\sqrt{2}$≤b≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.集合A={x|-1<x<3},集合B={x|$\frac{1}{3}<{3}^{x}<9$},則A∩B=(  )
A.(1,2)B.(-1,2)C.(1,3)D.(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在${(2x+\frac{1}{4x})^5}$的展開式中,x3的系數(shù)值為20.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.某同學(xué)的父母想為他3年后讀大學(xué)準(zhǔn)備一筆資金,從2013年他考入馬鞍山市某高中起,在每年的8月1日到銀行存入a元錢,連存三年,若年利率r保持不變,且每年到期的本金和利息均自動轉(zhuǎn)為新一年的本金(不計利息稅),則到2016年8月1日可取回的本息和(元)為$\frac{a}{r}$•[(1+r)4-1-r].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=|2x+1|-a2+$\frac{3a}{2}$,g(x)=|x|.
(I)當(dāng)a=0時,解不等式f(x)-g(x)≥0;
(2)若存在x∈R,使得f(x)≤g(x)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案