13.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},則(∁UA)∩(∁UB)={7,9}.

分析 根據(jù)集合的基本運算進(jìn)行求解即可.

解答 解:∵集合A={0,1,3,5,8},集合B={2,4,5,6,8},
∴∁UA={2,4,6,7,9},∁UB={0,1,3,7,9},
則(∁UA)∩(∁UB)={7.9},
故答案為:{7,9}

點評 本題主要考查集合的基本運算,根據(jù)補集和交集的定義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求滿足下列條件的m的值:
(1)直線l1:y=-x+1與直線l2:y=(m2-2)x+2m平行;
(2)直線l1:y=-2x+3與直線l2:y=(2m-1)x-5垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左、右焦點分別為F1,F(xiàn)2,弦AB過F1,若△ABF2的內(nèi)切圓面積為π,A,B兩點的坐標(biāo)分別為(x1,y1)和(x2,y2),則|y2-y1|的值為( 。
A.$\frac{5}{3}$B.$\frac{20}{3}$C.$\frac{\sqrt{5}}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)$f(x)=\frac{{lg({x+1})}}{x-2}$的定義域為{x|x>-1且x≠2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.頂點哎坐標(biāo)原點,始邊為x軸正半軸的角α的終邊與單位圓(圓心為原點,半徑為1的圓)的交點坐標(biāo)為$({x,\frac{3}{5}})$,則cscα=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若圓C:(x-5)2+(y+1)2=4上有n個點到直線4x+3y-2=0的距離為1,則n等于( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.△ABC中的內(nèi)角A,B,C的對邊分別為a,b,c,若b=4$\sqrt{5}$,c=5,B=2C,點D為邊BC上一點,且BD=6,則△ADC的面積位10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.命題“3mx2+mx+1>0恒成立”則實數(shù)m的取值范圍為[0,12).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知A是圓錐的頂點,BD是圓錐底面的直徑,C是底面圓周上一點,BD=2,BC=1,AC與底面所成角的大小為$\frac{π}{3}$,過點A作截面ABC,ACD,截去部分后的幾何體如圖所示.
(1)求原來圓錐的側(cè)面積;
(2)求該幾何體的體積.

查看答案和解析>>

同步練習(xí)冊答案