2.若根據(jù)10名兒童的年齡x(歲)與體重y(千克)數(shù)據(jù)用最小二乘法得到用年齡預(yù)測(cè)體重的回歸方程$\hat y=2x+7$,已知這10名兒童的年齡分別是2,3,3,5,2,6,7,3,4,5,則這10名兒童的平均體重是( 。
A.15千克B.16千克C.17千克D.18千克

分析 根據(jù)所給的10名兒童的年齡求出平均值,利用線性回歸方程過(guò)樣本中心點(diǎn),即可求出平均體重.

解答 解:這10名兒童的平均年齡是$\overline{x}$=$\frac{1}{10}$×(2+3+3+5+2+6+7+3+4+5)=4,
年齡預(yù)報(bào)體重的回歸方程是 方程$\hat y=2x+7$,
∴這10名兒童的平均體重是$\overline{y}$=2×4+7=15(千克).
故選:A.

點(diǎn)評(píng) 本題考查了線性回歸方程的應(yīng)用問(wèn)題,解題的關(guān)鍵是樣本中心點(diǎn)滿(mǎn)足線性回歸方程,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=3,(2$\overrightarrow{a}$-3$\overrightarrow$)•(2$\overrightarrow{a}$+$\overrightarrow$)=61.
(1)求向量$\overrightarrow{a}$與$\overrightarrow$的夾角θ;    
(2)求|$\overrightarrow{a}$+2$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在△ABC中,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,已知$B=\frac{π}{4}$,cosA-cos2A=0.
(1)求角C;
(2)若b2+c2=a-bc+2,求S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知[x]表示不大于x的最大整數(shù),設(shè)函數(shù)f(x)=[log2x],得到下列結(jié)論:
結(jié)論1:當(dāng)1<x<2時(shí),f(x)=0;
結(jié)論2:當(dāng)2<x<4時(shí),f(x)=1;
結(jié)論3:當(dāng)4<x<8時(shí),f(x)=2;
照此規(guī)律,得到結(jié)論10:當(dāng)29<x<210時(shí),f(x)=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.(Ⅰ)求值:$\frac{{tan150°cos{{210}°}sin({-60°})}}{{sin(-30°)cos{{120}°}}}$;
(Ⅱ)化簡(jiǎn):$\frac{sin(-α)cos(π+α)tan(2π+α)}{cos(2π+α)sin(π-α)tan(-α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.有編號(hào)分別為1、2、3、4的四個(gè)盒子和四個(gè)小球,把小球全部放入盒子,則恰有一個(gè)空盒子的放法數(shù)為144.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知一個(gè)樣本為x,1,y,5,若該樣本的平均數(shù)為2,則它的方差的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知$tan2θ=-2\sqrt{2}$,$θ∈(\frac{π}{4},\frac{π}{2})$.
(1)求tanθ的值;
(2)求$\frac{{2{{cos}^2}\frac{θ}{2}-sinθ-1}}{{\sqrt{2}sin(\frac{π}{4}+θ)}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)函數(shù)f(x)=|x-1|+2|x+1|
(Ⅰ)解不等式f(x)≤4;
(Ⅱ)當(dāng)f(x)≤4時(shí),|x+3|+|x+a|<x+6,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案