14.已知一個樣本為x,1,y,5,若該樣本的平均數(shù)為2,則它的方差的最小值為3.

分析 求出x+y=2,求出xy的最小值,根據(jù)方差的定義求出其最小值即可.

解答 解:樣本x,1,y,5的平均數(shù)為2,
∴x+y=2,
∴xy≤1,
∴S2=$\frac{1}{4}$[(x-2)2+(y-2)2+10]
=$\frac{5}{2}$+$\frac{1}{4}$(x2+y2)≥$\frac{5}{2}$+$\frac{1}{4}$•2xy=$\frac{5}{2}$+$\frac{1}{4}$×2=3,
當(dāng)且僅當(dāng)x=y=1時“=”成立,
∴方差的最小值是3.
故答案為:3.

點(diǎn)評 本題考查了求數(shù)據(jù)的方差和平均數(shù)問題,也考查了基本不等式的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=|x-a|+|2x+2|-5(a∈R).
(Ⅰ)試比較f(-1)與f(a)的大。
(Ⅱ)當(dāng)a=-5時,求函數(shù)f(x)的圖象與軸圍成的圖形面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,F(xiàn)為線段BC的中點(diǎn),CE=2EF,$DF=\frac{3}{5}AF$,設(shè)$\overrightarrow{AC}=a$,$\overrightarrow{AB}=b$,試用a,b表示$\overrightarrow{AE}$,$\overrightarrow{AD}$,$\overrightarrow{BD}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若根據(jù)10名兒童的年齡x(歲)與體重y(千克)數(shù)據(jù)用最小二乘法得到用年齡預(yù)測體重的回歸方程$\hat y=2x+7$,已知這10名兒童的年齡分別是2,3,3,5,2,6,7,3,4,5,則這10名兒童的平均體重是( 。
A.15千克B.16千克C.17千克D.18千克

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.將3個骰子全部擲出,設(shè)出現(xiàn)6點(diǎn)的骰子的個數(shù)為X,則P(X≥2)=$\frac{2}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若MP和OM分別是角$\frac{7π}{6}$的正選線和余弦線,則( 。
A.MP<OM<0B.OM>0>MPC.OM<MP<0D.MP>0>OM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.對于函數(shù)$f(x)=\sqrt{2}(sinx+cosx)$,給出下列四個命題:
①存在$α∈(-\frac{π}{2},0)$,使$f(α)=\sqrt{2}$;
②函數(shù)f(x)的圖象關(guān)于直線$x=-\frac{3π}{4}$對稱;
③存在φ∈R,使函數(shù)f(x+ϕ)的圖象關(guān)于坐標(biāo)原點(diǎn)成中心對稱;
④函數(shù)f(x)的圖象向左平移$\frac{π}{4}$就能得到y(tǒng)=-2cosx的圖象.
其中正確命題的序號是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知P=$\{0,1,\sqrt{2}\}$,Q={y|y=cosθ,θ∈R},則P∩Q=( 。
A.ϕB.{0}C.{0,1}D.$\{0,1,\sqrt{2}\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知a,b,c分別為△ABC的三個內(nèi)角A,B,C的對邊,$\frac{a-c}{b-c}$=$\frac{sinB}{sinA+sinC}$.
(Ⅰ)求∠A的大;
(Ⅱ)若a=$\sqrt{3}$,△ABC在BC邊上的中線長為1,求△ABC的周長.

查看答案和解析>>

同步練習(xí)冊答案