分析 確定拋物線C:y2=16x的焦點(diǎn)為F(4,0),準(zhǔn)線方程為x=-4,利用n=|MF|+|NF|,由拋物線的定義可得n=xM+4+xN+4=2x0+8,求出線段MN的垂直平分線方程,確定線段MN的垂直平分線與x軸交點(diǎn)的橫坐標(biāo)a,即可得出結(jié)論.
解答 解:拋物線C:y2=16x的焦點(diǎn)為F(4,0),準(zhǔn)線方程為x=-4.
設(shè)MN的中點(diǎn)坐標(biāo)為(x0,y0),
∵n=|AF|+|BF|,
∴由拋物線的定義可得n=xM+4+xN+4=2x0+8.
線段MN的垂直平分線方程為y-y0=-$\frac{1}{k}$(x-x0),
令y=0,x=ky0+x0=a,
又由點(diǎn)差法可得ky0=8,
∴a=8+x0,
∴2a-n=8.
故答案為8.
點(diǎn)評(píng) 本題考查拋物線的方程與性質(zhì),考查拋物線的定義,考查點(diǎn)差法的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x2-1=0,則x=1”的逆否命題為“若x≠1,則x2-1≠0” | |
B. | “x=1”是“x2-3x+2=0”的充分不必要條件 | |
C. | 若集合A={x|kx2+4x+4=0}中只有一個(gè)元素,則k=1 | |
D. | 對(duì)于命題p:?x∈R,使得x2+x+1<0,則?p:?x∈R,均有x2+x+1≥0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q為真,p∨q為假 | B. | p∧q為假,¬p為假 | C. | p∨q為真,¬q為假 | D. | p∨q為假,¬p為真 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | an=2n-1 | B. | an=2n-1 | C. | an=2n-1 | D. | an=n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+i | B. | 1-i | C. | -1+i | D. | -1-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=$\frac{1}{4}$ | B. | x=-$\frac{1}{4}$ | C. | y=$\frac{1}{4}$ | D. | y=-$\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
降雨量 | 70 | 110 | 140 | 160 | 200 | 220 |
頻率 | $\frac{1}{20}$ | $\frac{4}{20}$ | $\frac{2}{20}$ |
A. | 0.4 | B. | 0.3 | C. | 0.2 | D. | 0.1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com