19.已知復(fù)數(shù)z的共軛復(fù)數(shù)是$\overline{z}$,z-$\overline{z}$=4i,z+$\overline{z}$=2,則z=1+2i.

分析 利用解方程組求解復(fù)數(shù)z即可.

解答 解:復(fù)數(shù)z的共軛復(fù)數(shù)是$\overline{z}$,z-$\overline{z}$=4i,z+$\overline{z}$=2,
兩式相加可得2z=2+4i,
解得z=1+2i.
故答案為:1+2i.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的基本運(yùn)算,方程思想的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.曲線y=x2+x-2在x=1處的切線方程為3x-y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=log2(|x-1|+|x-5|-a).
(Ⅰ)當(dāng)a=5時(shí),求函數(shù)f(x)的定義域;
(Ⅱ)當(dāng)函數(shù)f(x)的定義域?yàn)镽時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某單位為了了解用電量y度與氣溫x℃之間的關(guān)系隨機(jī)統(tǒng)計(jì)了某4天的用電量與當(dāng)天氣溫
氣溫(℃)141286
用電量22263438
(1)求用電量y與氣溫x之間的線性回歸方程,
(2)由(1)的方程預(yù)測(cè)氣溫為5℃時(shí),用電量的度數(shù).
參考公式:$\begin{array}{l}b=\frac{{\sum_{i=1}^n{({x_i}-\overline x})({y_i}-\overline y)}}{{\sum_{i=1}^n{({x_i}-\overline x}{)^2}}}=\frac{{\sum_{i=1}^n{x_i}{y_i}-n\overline x\overline y}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}\\ \overline a=\overline y-b\overline x\end{array}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.一個(gè)袋中裝有若干個(gè)大小相同的黑球、白球和紅球.已知從袋中任意摸出1個(gè)球,得到黑球的概率是$\frac{2}{5}$;從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是$\frac{7}{9}$.
(1)若袋中共有10個(gè)球,①求白球的個(gè)數(shù);②從袋中任意摸出3個(gè)球,記得到白球的個(gè)數(shù)為ξ,求隨機(jī)變量ξ的數(shù)學(xué)期E(ξ);
(2)求證:從袋中任意摸出2個(gè)球,至少得到1個(gè)黑球的概率不大于$\frac{7}{10}$,并指出袋中哪種顏色的球個(gè)數(shù)最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知復(fù)數(shù)z=$\frac{1+2i}{3-i}$(i是虛數(shù)單位),則復(fù)數(shù)z的虛部是( 。
A.$\frac{1}{10}$iB.$\frac{1}{10}$C.$\frac{7}{10}$D.$\frac{7}{10}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.棗莊市教育局基教科研本市高中學(xué)生的性別與閱讀量、智商、視力、成績(jī)這四個(gè)變量只剪斷額關(guān)系,在全是高中學(xué)校隨機(jī)抽查了20名男生、30名女生,得到統(tǒng)計(jì)數(shù)據(jù)如表1至表4,則與性別有關(guān)聯(lián)的可能性最大的變量是( 。
 閱讀量
性別
 豐富 不豐富
 男 14 6
 女 4 26
 智商
性別
 偏高 正常
 男 8 12
 女 822
 視力

性別
好  差
 男 515 
 女 12 18
 成績(jī)
性別
 不及格 及格
 男14 
 女 10 20
A.閱讀量B.智商C.視力D.成績(jī)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某校數(shù)學(xué)課外興趣小組為研究數(shù)學(xué)成績(jī)是否與性別有關(guān),先統(tǒng)計(jì)本校高二年級(jí)每個(gè)學(xué)生一學(xué)期數(shù)學(xué)成績(jī)平均分(采用百分制),剔除平均分在30分下的學(xué)生后,共有男生300名,女生200名,現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,按性別分為兩組,并將兩組學(xué)生成績(jī)分為6組,得到如下所示頻數(shù)分布表.
分?jǐn)?shù)段[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]
39181569
64510132
(1)估計(jì)男、女生各自的平均分(同一組數(shù)據(jù)用該級(jí)區(qū)間中點(diǎn)值作代表),從計(jì)算結(jié)果看,數(shù)學(xué)成績(jī)與性別是否有關(guān);
(2)規(guī)定80分以上者為優(yōu)分(含80分),請(qǐng)你根據(jù)已知條件作出2×2列聯(lián)表,并判斷是否有90%以上的把握認(rèn)為“數(shù)學(xué)成績(jī)與性別有關(guān)”.
 優(yōu)分非優(yōu)分合計(jì)
男生   
女生   
合計(jì)  100
P(K2≥k)0.1000.0500.0100.001
 k2.7063.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.不等式2x+3-x2>0的解集為( 。
A.{x|x<-3或x>1}B.{x|-3<x<1}C.{x|x<-3或x>1}D.{x|-1<x<3}

查看答案和解析>>

同步練習(xí)冊(cè)答案