為了降低能源損耗,三明市某室內(nèi)體育館的外墻需要建造隔熱層,體育館要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=
40
kx+5
(0≤x≤10),已知隔熱層厚度為1cm時,每年能源消耗費用為5萬元.設(shè)f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(Ⅰ)求k的值及f(x)的表達式.
(Ⅱ)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值.
考點:函數(shù)模型的選擇與應用
專題:應用題,函數(shù)的性質(zhì)及應用
分析:(Ⅰ)由每年的能源消耗費用為C(x),當x=1時,可得k的值;又加裝隔熱層的費用為C1(x),所以總費用函數(shù)f(x)可表示出來,其定義域可得;
(Ⅱ)對函數(shù)f(x)變形,利用基本不等式求得最值,即得所求.
解答: 解:(Ⅰ)x=1時,c=5,∴k=3,
∴C(x)=
40
3x+5

∴f(x)=6z+
20×40
3x+5
=6x+
800
3x+5
(0≤x≤10);
(Ⅱ)設(shè)3x+5=t,t∈[5,35],則y=2t+
800
t
-10≥2
2t•
800
t
-10=70,
當且僅當2t=
800
t
,即t=20時等號成立,此時x=5,f(x)的最小值為70,
∴當隔熱層修建5cm厚時,總費用達到最小值為70萬元.
點評:本題考查了平均值不等式在函數(shù)極值中的應用,在利用平均值不等式求最值時,要注意等號成立的條件是什么.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知△ABC中,|
BC
|
=10,
AB
AC
=-16,D為邊BC的中點,則|
AD
|
等于( 。
A、6B、5C、4D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,一科學考察船從港口O出發(fā),沿北偏東α角的射線OZ方向航行,而在離港口3
13
海里的北偏東β角的A處有一個供給科考船物資的小島,其中tanα=
1
3
,tanβ=
3
2
.現(xiàn)指揮部需要緊急征調(diào)沿海岸線港口O正東t(t>7)海里的B處的補給船,速往小島A裝運物資供給科考船,該船沿BA方向全速追趕科考船,并在C處相遇.經(jīng)測算當兩船運行的航向與海岸線OB圍成的三角形OBC的面積最小時,這種補給最適宜.
(1)求S關(guān)于t的函數(shù)關(guān)系式S(t);
(2)應征調(diào)t為何值處的船只,補給最適宜.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln(1+x)-
ax
x+2

(Ⅰ)當a=0時,求曲線y=f(x)在原點處的切線方程;
(Ⅱ)當a>0時,討論函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性;
(Ⅲ)證明不等式
1
3
+
1
5
+…+
1
2n+1
<ln
n+1
對任意n∈N*成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱錐C-ABD中,AB=AD=BD=BC=CD=2,O為BD的中點,∠AOC=120°,P為AC上一點,Q為AO上一點,且
AP
PC
=
AQ
QO
=2

(Ⅰ)求證:PQ∥平面BCD;
(Ⅱ)求三棱錐P-ABD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x2+ax)ex在(0,1)上單調(diào)遞減.
(Ⅰ)求a的取值范圍;
(Ⅱ)令g(x)=[(a+3)x+a2+2a-1]ex,h(x)=f′(x)-g(x),求h(x)在[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓的中心是原點O,它的長軸長為2a,短軸長為2
2
,右焦點為F(c,0)(c>0),設(shè)點A(
a2
c
,0),|OF|=2|FA|,過點A的直線與橢圓相交于P,Q兩點
(1)求橢圓的方程及離心率;
(2)若
.
OP
.
OQ
=0,求直線PQ的方程;
(3)設(shè)
.
AP
.
AQ
(λ>1),過點P作x軸的垂線與橢圓相交于另一點M,證明
.
FM
=-λ
.
FQ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點(1,
3
2
),橢圓C的離心率e=
3
2

(1)求橢圓C的方程;
(2)△ABC的三個頂點都在橢圓上,且△ABC的重心是原點O,證明:△ABC的面積是定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為考察高中生的性別與是否喜歡數(shù)學課程之間的關(guān)系,在我市某普通中學高中生中隨機抽取200名學生,得到如下2×2列聯(lián)表:
喜歡數(shù)學課 不喜歡數(shù)學課 合計
30 60 90
20 90 110
合計 50 150 200
經(jīng)計算K2≈6.06,根據(jù)獨立性檢驗的基本思想,約有
 
(填百分數(shù))的把握認為“性別與喜歡數(shù)學課之間有關(guān)系”.

查看答案和解析>>

同步練習冊答案