3.關(guān)于x的不等式ax2+bx+2>0的解集為(-$\frac{1}{2}$,$\frac{1}{3}$),則不等式$\frac{a(x-1)}{x+b}$≥6的解為(  )
A.$(\frac{4}{3},2)$B.$[\frac{4}{3},2)$C.$(-∞,\frac{4}{3})∪(2,+∞)$D.$(-∞,\frac{4}{3}]∪(2,+∞)$

分析 根據(jù)一元二次方程與一元二不等式的關(guān)系求出a,b的值,帶入再求解不等式$\frac{a(x-1)}{x+b}$≥6的解.

解答 解:不等式ax2+bx+2>0的解集為(-$\frac{1}{2}$,$\frac{1}{3}$),
可得:一元二次方程ax2+bx+2=0的根:${x}_{1}=-\frac{1}{2}$,${x}_{2}=\frac{1}{3}$,
由韋達(dá)定理:可得:$\left\{\begin{array}{l}{\frac{2}{a}=-\frac{1}{6}}\\{-\frac{a}=\frac{1}{3}-\frac{1}{2}}\end{array}\right.$,
解得:a=-12,b=-2.
∴不等式$\frac{a(x-1)}{x+b}$≥6化簡(jiǎn)得:$\frac{2(1-x)}{x-2}≤1$等價(jià)于(4-3x)(x-2)≤0,且x-2≠0,
解得:$\frac{4}{3}≤x<2$.
故選:B.

點(diǎn)評(píng) 本題考查不等式的解法,一元二次方程與一元二不等式的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知角α的正弦值與余弦值均為負(fù)值,且cos(75°+α)=$\frac{1}{3}$,則cos(105°-α)+sin(α-105°)=$\frac{2\sqrt{2}-1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知點(diǎn)A(4,-3)與B(2,-1)關(guān)于直線l對(duì)稱,在l上有一點(diǎn)P,使點(diǎn)P到直線4x+3y-2=0的距離等于2,則點(diǎn)P的坐標(biāo)是(1,-4)或($\frac{27}{7}$,-$\frac{8}{7}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)f(x)=sin(ωx+φ),(x∈R,ω>0,0<φ<π)的部分圖象如圖所示,則( 。
A.$ω=\frac{π}{2},φ=\frac{π}{4}$B.$ω=\frac{π}{3},φ=\frac{π}{6}$C.$ω=\frac{π}{4},φ=\frac{π}{4}$D.$ω=\frac{π}{4},φ=\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)f(x)=-x2-2x+1,g(x)=$\left\{\begin{array}{l}x+\frac{1}{x}(x>0)\\ 3-(\frac{1}{2})^x(x≤0)\end{array}$,若函數(shù)y=g(f(x))-a恰有四個(gè)不同的零點(diǎn),則a的取值范圍是( 。
A.(2,+∞)B.($\frac{5}{2}$,+∞)C.(2,$\frac{5}{2}$)D.[2,$\frac{5}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)=$\frac{x+1}{2x-1}$,數(shù)列{an}的前n項(xiàng)和為Sn,且an=f($\frac{n}{2017}$),則S2017=( 。
A.1008B.1010C.$\frac{2019}{2}$D.2019

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)f(x),g(x)的定義域?yàn)镽,若不等式f(x)≥0的解集為F,不等式g(x)<0的解集為G,全集為R,則不等式組$\left\{\begin{array}{l}{f(x)<0}\\{g(x)≥0}\end{array}\right.$的解集是( 。
A.(∁RF)∪GB.R(F∩G)C.F∩GD.(∁RF)∩(∁RG)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若函數(shù)y=f(x)為奇函數(shù),則它的圖象必經(jīng)過(guò)點(diǎn)(  )
A.(-a,-f(a))B.(0,0)C.(a,f(-a))D.(-a,-f(-a))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)f(x)=($\frac{1}{2}$)${\;}^{-{x}^{2}+6x-2}$的單調(diào)增區(qū)間為(3,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案