A. | (2,+∞) | B. | ($\frac{5}{2}$,+∞) | C. | (2,$\frac{5}{2}$) | D. | [2,$\frac{5}{2}$) |
分析 由題,y=g(f(x))的圖象與y=a的圖象有四個(gè)不同的交點(diǎn),由于復(fù)合函數(shù)圖象不容易作圖,則用換元法將復(fù)合函數(shù)分解為兩個(gè)函數(shù).令t=f(x),則y=g(t),由y=g(t)與y=a的交點(diǎn)個(gè)數(shù),確定t的值及個(gè)數(shù),再根據(jù)t的值確定t=f(x)的根x的個(gè)數(shù),即為函數(shù)y=g(f(x))的零點(diǎn)的個(gè)數(shù).
解答 解:令t=f(x)=-(x+1)2+2,t≤2,
則y=g(f(x))=g(t)=$\left\{\begin{array}{l}{t+\frac{1}{t},0<t≤2}\\{3-(\frac{1}{2})t,t≤0}\end{array}\right.$,
由題,y=g(f(x))-a的圖象恰有四個(gè)不同的零點(diǎn),
等價(jià)于關(guān)于x的方程g(f(x))=a有4個(gè)不同的根,
等價(jià)于關(guān)于t的方程g(t)=a的根使得關(guān)于x的方程t=f(x)共有四個(gè)不同的根.
∵t=2時(shí),y=2.5;且函數(shù)y=g(t)、t=f(x)的圖象如圖所示.
∴對(duì)a分類(lèi)如下:
①a=2時(shí),t1=1或t2=0,
此時(shí)函數(shù)y=g(f(x))-a有四個(gè)零點(diǎn),符合;
②2<a<2.5時(shí),方程a=g(t)有兩個(gè)不同的根,且t1∈(0,1)或t2∈(1,2),
此時(shí)函數(shù)y=g(f(x))-a有四個(gè)零點(diǎn),符合;
③a=2.5時(shí),t1=2或t2=0.5
當(dāng)t=2時(shí),方程t=f(x)有且只有一個(gè)根,當(dāng)t=0.5時(shí),方程t=f(x)有兩個(gè)根,
故此時(shí)函數(shù)y=g(f(x))-a有三個(gè)零點(diǎn),不符合;
④a>2.5時(shí),方程a=g(t)有且只有一個(gè)根,且t∈(0,1),
此時(shí)函數(shù)y=g(f(x))-a有兩個(gè)零點(diǎn),不符合;
⑤a<2時(shí),方程a=g(t)有且只有一個(gè)根,且t∈(-∞,0),
此時(shí)函數(shù)y=g(f(x))-a有兩個(gè)零點(diǎn),不符合;
綜上所述,當(dāng)2≤a<2.5時(shí),函數(shù)y=g(f(x))-a有四個(gè)零點(diǎn).
故選:D.
點(diǎn)評(píng) 考查函數(shù)零點(diǎn)的化歸思想和數(shù)形結(jié)合思想,復(fù)合函數(shù)用換元法轉(zhuǎn)化為兩個(gè)基礎(chǔ)函數(shù),避免作復(fù)合函數(shù)的圖象,研究零點(diǎn)個(gè)數(shù)的方法.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y2=-2x | B. | y2=-4x | C. | y2=2x | D. | y2=-4x或y2=-36x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{21}$ | B. | $2\sqrt{6}$ | C. | 4 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 所有著名的作家可以形成一個(gè)集合 | |
B. | 0與 {0}的意義相同 | |
C. | 集合A={x|x=$\frac{1}{n}$,n∈N*} 是有限集 | |
D. | 方程x2+2x+1=0的解集只有一個(gè)元素 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(\frac{4}{3},2)$ | B. | $[\frac{4}{3},2)$ | C. | $(-∞,\frac{4}{3})∪(2,+∞)$ | D. | $(-∞,\frac{4}{3}]∪(2,+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com