分析 根據(jù)圖形的性質(zhì),求出截面圓的半徑,即而求出求出球的半徑,得出體積
解答 解:根據(jù)幾何意義得出:邊長為12的正方形,球的截面圓為正方形的內(nèi)切圓,
∴圓的半徑為:6,
∵球面恰好接觸水面時(shí)測得水深為8cm,
∴d=12-8=4,
∴球的半徑為:R=$\sqrt{(R-4)^{2}+{6}^{2}}$,
R=$\frac{13}{2}$
∴球的體積為$\frac{4}{3}$π×($\frac{13}{2}$)3=$\frac{2197π}{6}$cm3
故答案為:$\frac{2197π}{6}$
點(diǎn)評 本題考查了球的幾何性質(zhì),球的體積,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$ | B. | 若|$\overrightarrow{a}$|>|$\overrightarrow$|,則$\overrightarrow{a}$>$\overrightarrow$ | C. | 若$\overrightarrow{a}$=$\overrightarrow$,則$\overrightarrow{a}$∥$\overrightarrow$ | D. | 若|$\overrightarrow{a}$|=0,則$\overrightarrow{a}$=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | πcm2 | B. | $\frac{3}{2}π$cm2 | C. | 3πcm2 | D. | 6πcm2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{33}{4}$ | B. | $\frac{25}{4}$ | C. | $\frac{1}{4}$ | D. | $\frac{{\sqrt{17}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
零件個(gè)數(shù)x | 10 | 20 | 30 | 40 | 50 |
加工時(shí)間y分鐘 | 63 | ? | 75 | 82 | 88 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 必要不充分條件 | B. | 充分不必要條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,0,1} | B. | {-1,0} | C. | {-2,-1,0} | D. | {0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com