【題目】已知雙曲線.

(1)求以右焦點為圓心,與雙曲線的漸近線相切的圓的方程;

(2)若經(jīng)過點的直線與雙曲線的右支交于不同兩點,求線段的中垂線軸上截距的取值范圍.

【答案】(1)見解析;(2).

【解析】試題分析:(1)先根據(jù)雙曲線焦點到漸近線距離等于半虛軸長得圓的半徑,再根據(jù)標準式求圓的方程,(2)先設經(jīng)過點的直線方程,與雙曲線方程聯(lián)立方程組,根據(jù)韋達定理以及中點坐標公式得線段的中點坐標,利用點斜式得線段的中垂線方程,解得截距,再根據(jù)判別式大于零條件確定斜率k的范圍,結(jié)合函數(shù)求截距的取值范圍

試題解析:(1),漸近線

,.

(2)設經(jīng)過點的直線方程為,交點為

的中點為,得中垂線

得截距

即線段的中垂線軸上截距的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在原點,焦點在軸上的橢圓的離心率為,且經(jīng)過點

)求橢圓的方程;

)是否存在過點的直線相交于不同的兩點,滿足?

若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且有極大值.

(Ⅰ)求的解析式;

(Ⅱ)若的導函數(shù),不等式為正整數(shù))對任意正實數(shù)恒成立,求的最大值.(注:).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校藝術節(jié)對同一類的,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,,的中點.

(1)證明:平面

(2)若點在棱上,且,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列,前項和為,若對任意的,均有是常數(shù),且)成立,則稱數(shù)列為“數(shù)列”.

(1)若數(shù)列為“數(shù)列”,求數(shù)列的前項和;

(2)若數(shù)列為“數(shù)列”,且為整數(shù),試問:是否存在數(shù)列,使得對一切,恒成立?如果存在,求出這樣數(shù)列的所有可能值,如果不存在,請說明理由;

(3)若數(shù)列為“數(shù)列”,且,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[2018·滄州質(zhì)檢]對于橢圓,有如下性質(zhì):若點是橢圓上的點,則橢圓在該點處的切線方程為.利用此結(jié)論解答下列問題.點是橢圓上的點,并且橢圓在點處的切線斜率為

(1)求橢圓的標準方程;

(2)若動點在直線上,經(jīng)過點的直線,與橢圓相切,切點分別為,.求證:直線必經(jīng)過一定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】盒子中裝有四張大小形狀均相同的卡片,卡片上分別標有數(shù)其中是虛數(shù)單位.稱“從盒中隨機抽取一張,記下卡片上的數(shù)后并放回”為一次試驗(設每次試驗的結(jié)果互不影響).

(1)求事件在一次試驗中,得到的數(shù)為虛數(shù)”的概率與事件在四次試驗中,

至少有兩次得到虛數(shù)” 的概率;

(2)在兩次試驗中,記兩次得到的數(shù)分別為,求隨機變量的分布列與數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸上,短軸長和焦距都等于2, 是橢圓上的一點,且在第一象限內(nèi),過且斜率等于的直線與橢圓交于另一點,點關于原點的對稱點為.

)證明:直線的斜率為定值;

)求面積的最大值,并求此時直線的方程.

查看答案和解析>>

同步練習冊答案