【題目】盒子中裝有四張大小形狀均相同的卡片,卡片上分別標(biāo)有數(shù)其中是虛數(shù)單位.稱“從盒中隨機(jī)抽取一張,記下卡片上的數(shù)后并放回”為一次試驗(yàn)(設(shè)每次試驗(yàn)的結(jié)果互不影響).
(1)求事件 “在一次試驗(yàn)中,得到的數(shù)為虛數(shù)”的概率與事件 “在四次試驗(yàn)中,
至少有兩次得到虛數(shù)” 的概率;
(2)在兩次試驗(yàn)中,記兩次得到的數(shù)分別為,求隨機(jī)變量的分布列與數(shù)學(xué)期望
【答案】(1) (2)見解析
【解析】試題分析:(1)根據(jù)卡片上分別標(biāo)有數(shù)﹣i,i,﹣2,2其中i是虛數(shù)單位,可求P(A),利用對(duì)立事件的概率公式,可求P(B);
(2)確定隨機(jī)變量ξ=|ab|的取值,求出相應(yīng)的概率,可得分布列與數(shù)學(xué)期望Eξ.
試題解析:
(1)∵卡片上分別標(biāo)有數(shù)﹣i,i,﹣2,2其中i是虛數(shù)單位,
∴P(A)==,
P(B)=1﹣P()=1﹣[]=1﹣=
(2)a,b,ξ的可能取值如下表所示:
由表可知:P(ξ=1)==,P(ξ=2)==,P(ξ=4)==
∴隨機(jī)變量ξ的分布列為
∴Eξ=1×+2×+4×=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直角梯形中,,、分別是、上的點(diǎn),,且(如圖①).將四邊形沿折起,連接、、(如圖②).在折起的過程中,則下列表述:
①平面;
②四點(diǎn)、、、可能共面;
③若,則平面平面;
④平面與平面可能垂直.其中正確的是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線.
(1)求以右焦點(diǎn)為圓心,與雙曲線的漸近線相切的圓的方程;
(2)若經(jīng)過點(diǎn)的直線與雙曲線的右支交于不同兩點(diǎn)、,求線段的中垂線在軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】科學(xué)研究證實(shí),二氧化碳等溫空氣體的排放(簡(jiǎn)稱碳排放)對(duì)全球氣候和生態(tài)環(huán)境產(chǎn)生了負(fù)面影響,環(huán)境部門對(duì)市每年的碳排放總量規(guī)定不能超過萬噸,否則將采取緊急限排措施.已知市年的碳排放總量為萬噸,通過技術(shù)改造和倡導(dǎo)低碳生活等措施,此后每年的碳排放量比上一年的碳排放總量減少.同時(shí),因經(jīng)濟(jì)發(fā)展和人口增加等因素,每年又新增加碳排放量萬噸.
(1)求市年的碳排放總量(用含的式子表示);
(2)若市永遠(yuǎn)不需要采取緊急限排措施,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中.
(1)若,求過點(diǎn)且與曲線相切的直線方程;
(2)若函數(shù)有兩個(gè)零點(diǎn).
①求的取值范圍;
②求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,過點(diǎn)的直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,記直線與曲線分別交于兩點(diǎn).
(1)求曲線和的直角坐標(biāo)方程;
(2)證明:成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且a+b+c=8.
(1)若a=2,b=,求cosC的值;
(2)若sinAcos2+sinB·cos2=2sinC,且△ABC的面積S=sinC,求a和b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4 — 4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為().
(1)分別寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(2)已知點(diǎn),直線與曲線相交于兩點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,作棱錐,其中點(diǎn)在側(cè)棱所在直線上,,,是的中點(diǎn).
(1)證明:平面;
(2)求以為軸旋轉(zhuǎn)所圍成的幾何體體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com