【題目】下列說法中正確的是(

A.若兩個隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越接近于1

B.若正態(tài)分布,則

C.把某中學(xué)的高三年級560名學(xué)生編號:1560,再從編號為11010名學(xué)生中隨機(jī)抽取1名學(xué)生,其編號為,然后抽取編號為,,,…的學(xué)生,這樣的抽樣方法是分層抽樣

D.若一組數(shù)據(jù)0,3,4的平均數(shù)是2,則該組數(shù)據(jù)的方差是

【答案】D

【解析】

利用線性相關(guān)的強(qiáng)弱與相關(guān)系數(shù)的絕對值的關(guān)系可判斷A;利用正態(tài)分布密度曲線的性質(zhì)可判斷B;利用分層抽樣的特征可判斷C;利用平均數(shù)、方差的運算可判斷D.

對于A,兩個隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值越接近于1,故A錯誤;

對于B,由正態(tài)分布,則正態(tài)分布密度曲線關(guān)于對稱,

,故B錯誤;

對于C1560,再從編號為11010名學(xué)生中隨機(jī)抽取1名學(xué)生,

其編號為,然后等間距抽取編號為,,…的學(xué)生,屬于系統(tǒng)抽樣,

故C錯誤;

對于D,一組數(shù)據(jù)0,3,4的平均數(shù)是2,即,解得,

所以方差為,故D正確.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,點是圓上任意一點,線段的垂直平分線交于點,點的軌跡記為曲線

1)求曲線的方程;

2)過的直線交曲線于不同的,兩點,交軸于點,已知,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,E為邊的中點,將沿直線翻轉(zhuǎn)成平面.M、O分別為線段、的中點,則在翻轉(zhuǎn)過程中,下列說法錯誤的是(

A.與平面垂直的直線必與直線垂直;

B.異面直線所成角是定值;

C.一定存在某個位置,使;

D.三棱錐外接球半徑與棱的長之比為定值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】莊子說:一尺之錘,日取其半,萬世不竭,這句話描述的是一個數(shù)列問題,現(xiàn)用程序框圖描述,如圖所示,若輸入某個正整數(shù)n后,輸出的S∈(),則輸入的n的值為( 。

A.7B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸正半軸極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是

1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;

2)若點是曲線上的動點,求到直線距離的最小值,并求出此時點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,點上的不同于頂點的動點,上在點處的切線分別與軸軸交于點.若存在常數(shù)滿足對任意的點都有

(Ⅰ)求實數(shù),的值;

(Ⅱ)過點的垂線與交于不同于的一點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形中,,,高為,的中點,為折線段上的動點,設(shè)的最小值為,若關(guān)于的方程有兩不等實根,則實數(shù)的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校兩個班級100名學(xué)生在一次考試中的成績的頻率分布直方圖如圖所示,其中成績分組區(qū)如下表:

組號

第一組

第二組

第三組

第四組

第五組

分組

1)求頻率表分布直方圖中a的值;

2)根據(jù)頻率表分布直方圖,估計這100名學(xué)生這次考試成績的平均分;

3)現(xiàn)用分層抽樣的方法從第三、四、五組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個總體,從中隨機(jī)抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國慶節(jié)來臨,某公園為了豐富廣大人民群眾的業(yè)余生活,特地以我們都是中國人為主題舉行猜謎語競賽.現(xiàn)有兩類謎語:一類叫事物謎,就是我們常說的謎語;另一類叫文義謎,也就是我們常說的燈謎,共8道題,其中事物謎4道題,文義謎4道題,孫同學(xué)從中任取3道題解答.

1)求孫同學(xué)至少取到2道文義謎題的概率;

2)如果孫同學(xué)答對每道事物謎題的概率都是,答對每道文義謎題的概率都是,且各題答對與否相互獨立,已知孫同學(xué)恰好選中2道事物謎題,1道文義謎題,用表示孫同學(xué)答對題的個數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案