5.函數(shù)f(x)=log2|-2x+a|在區(qū)間(3,4)上單調(diào),則a的取值范圍是( 。
A.(6,8)B.[8,+∞)C.(-∞,6)∪(8,+∞)D.(-∞,6]∪[8,+∞)

分析 由題意可得y=|-2x+a|在區(qū)間(3,4)上單調(diào),從而可得-6+a≤0或-8+a≥0,從而解得.

解答 解:∵函數(shù)f(x)=log2|-2x+a|在區(qū)間(3,4)上單調(diào),
∴y=|-2x+a|在區(qū)間(3,4)上單調(diào),
∴-6+a≤0或-8+a≥0,
即a≤6或a≥8;
故選:D.

點(diǎn)評 本題考查了函數(shù)的性質(zhì)的判斷與應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.海水受日月的引力,在一定的時候發(fā)生漲落的現(xiàn)象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情況下,船在漲潮時駛進(jìn)航道,靠近碼頭;卸貨后,在落潮時返回海洋.下面是某港口在某季節(jié)每天時間與水深(單位:米)的關(guān)系表:
時刻0:003:006:009:0012:0015:0018:0021:0024:00
水深10.013.09.97.010.013.010.17.010.0
(1)請用一個函數(shù)來近似描述這個港口的水深y與時間t的函數(shù)關(guān)系;
(2)一般情況下,船舶航行時,船底離海底的距離為5米或5米以上認(rèn)為是安全的(船舶?繒r,船底只要不碰海底即可).某船吃水深度(船底離地面的距離)為6.5米.
Ⅰ)如果該船是旅游船,1:00進(jìn)港希望在同一天內(nèi)安全出港,它至多能在港內(nèi)停留多長時間(忽略進(jìn)出港所需時間)?
Ⅱ)如果該船是貨船,在2:00開始卸貨,吃水深度以每小時0.5米的速度減少,由于臺風(fēng)等天氣原因該船必須在10:00之前離開該港口,為了使卸下的貨物盡可能多而且能安全駛離該港口,那么該船在什么整點(diǎn)時刻必須停止卸貨(忽略出港所需時間)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知圓C:(x-3)2+(y-2)2=r2(r>0).
(1)若點(diǎn)P(4,-1)在圓C外,求r的取值范圍;
(2)若直線l:y=x+2被圓C截得的弦AB的長等于該圓的半徑,求圓C的方程;
(3)在(2)的條件下,已知直線m:y=x+n被圓截得的弦與圓心C構(gòu)成三角形CDE.問△CDE的面積有沒有最大值?若有最大值,求出直線m的方程;若沒有最大值,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知關(guān)于x的方程loga(x-3)+1=loga(x+2)+loga(x-1)有實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若橢圓$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{16}$=1的弦過點(diǎn)P(3,2),且被點(diǎn)P平分,求此弦所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知E是矩形ABCD(如圖1)邊CD上的一點(diǎn),現(xiàn)沿AE將△DAE折起至△D1AE(如圖2),并且平面D1AE⊥平面ABCE,圖3為四棱錐D1-ABCE的主視圖與左視圖.
(1)求證:直線BE⊥平面D1AE;
(2)求點(diǎn)A到平面D1BC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為F(1,0),過焦點(diǎn)F的直線l與拋物線C相交于A、B兩點(diǎn),若直線l的傾斜角為45°,則弦AB的中點(diǎn)坐標(biāo)為(3,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=|x+1|+|x-2|.命題p:關(guān)于x的不等式f(x)<a的解集不是空集;命題q:函數(shù) y=log2[(4-a)x-3]在其定義域上是減函數(shù).
(1)解不等式f(x)≤5;
(2)若命題“p且q”是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)y=2x3-3x2-12x+5在[-3,3]上的最大值是12.

查看答案和解析>>

同步練習(xí)冊答案