計(jì)算:msin
7
2
π
+ntan(-4π)+pcos
5
2
π
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:利用誘導(dǎo)公式即可得出.
解答: 解:原式=msin(4π-
π
2
)
+0+pcos(2π+
π
2
)

=-msin
π
2
+pcos
π
2

=-m.
點(diǎn)評:本題考查了誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓25x2+16y2=1的焦點(diǎn)坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=cos2x-2cosx+1值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1的左右焦點(diǎn)分別為F1,F(xiàn)2,直線y=x-1過橢圓的焦點(diǎn)F2且與橢圓交于P,Q兩點(diǎn),若△F1PQ周長為4
2

(1)求橢圓的方程;
(2)圓C′:x2+y2=1直線y=kx+m與圓C′相切且與橢圓C交于不同的兩點(diǎn)A,B,O坐標(biāo)原點(diǎn).若
OA
OB
=λ,且
2
3
≤λ≤
3
4
,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校為了解學(xué)生寒假期間的學(xué)習(xí)情況,從初中及高中各班共抽取了50名學(xué)生,對他們每天平均學(xué)習(xí)時(shí)間進(jìn)行統(tǒng)計(jì).請根據(jù)下面的各班人數(shù)統(tǒng)計(jì)表和學(xué)習(xí)時(shí)間的頻率分布直方圖解決下列問題:
年級 人數(shù)
初一 4
初二 4
初三 6
高一 12
高二 6
高三 18
合計(jì) 50
(Ⅰ)抽查的50人中,每天平均學(xué)習(xí)時(shí)間為6~8小時(shí)的人數(shù)有多少?
(Ⅱ)經(jīng)調(diào)查,每天平均學(xué)習(xí)時(shí)間不少于6小時(shí)的學(xué)生均來自高中.現(xiàn)采用分層抽樣的方法,從學(xué)習(xí)時(shí)間不少于6小時(shí)的學(xué)生中隨機(jī)抽取6名學(xué)生進(jìn)行問卷調(diào)查,求這三個年級各抽取了多少名學(xué)生;
(Ⅲ)在(Ⅱ)抽取的6名學(xué)生中隨機(jī)選取2人進(jìn)行訪談,求這2名學(xué)生來自不同年級的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果點(diǎn)P在平面區(qū)域
2x-y+2≥0
x-2y+1≤0
x+y-2≤0
上,
(1)計(jì)算平面區(qū)域的面積;
(2)求函數(shù)z=2x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐O-ABC,A、B、C三點(diǎn)均在球心O的表面上,且AB=BC=1,∠ABC=120°,三棱錐O-ABC的體積為
5
4
,求球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(sinx,cosx),
b
=(cosx,cosx),函數(shù)f(x)=
a
b

(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)函數(shù)f(x)的圖象可以由函數(shù)y=sinx的圖象經(jīng)過怎樣的變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(1,
sinα
sin(α+2β)
),B(
sinα
sin(α-2β)
-2,1),且
OA
OB
=0,sinβ≠0,sinα-kcosβ=0,則k=
 

查看答案和解析>>

同步練習(xí)冊答案