5.函數(shù)H(x)=sin(πx)-log2017x=0的解的個(gè)數(shù)為( 。
A.2014個(gè)B.2015個(gè)C.2016個(gè)D.2017個(gè)

分析 利用函數(shù)與方程之間的關(guān)系,轉(zhuǎn)化為兩個(gè)函數(shù)的交點(diǎn)個(gè)數(shù)問(wèn)題,利用數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:由sin(πx)-log2017x=0得sin(πx)=log2017x,
作出函數(shù)y=sin(πx)和y=log2017x的圖象,
函數(shù)y=sin(πx)的周期T=$\frac{2π}{π}$=2,
由y=log2017x=1得x=2017,
由圖象知,在一個(gè)周期內(nèi)兩個(gè)函數(shù)有2個(gè)交點(diǎn),在[0,2017]內(nèi)共有1008個(gè)周期外1個(gè)根,
即1008×2+1=2016+1=2017個(gè),
故選:D

點(diǎn)評(píng) 本題主要考查方程根的個(gè)數(shù)的判斷,利用函數(shù)與方程之間的關(guān)系,轉(zhuǎn)化為兩個(gè)函數(shù)的交點(diǎn)問(wèn)題,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知A(2,-4),B(-1,3),C(3,4),若$\overrightarrow{CM}$=2$\overrightarrow{CA}$+3$\overrightarrow{CB}$,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖,在平面直角坐標(biāo)系xOy中,以正方形ABCD的兩個(gè)頂點(diǎn)A,B為焦點(diǎn),且過(guò)點(diǎn)C,D的雙曲線的離心率是$\sqrt{2}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=2x2+3x-5.
(1)求當(dāng)x1=4,且△x=1時(shí),函數(shù)增量△y和平均變化率$\frac{△y}{△x}$;
(2)求當(dāng)x1=4,且△x=0.1時(shí),函數(shù)增量△y和平均變化率$\frac{△y}{△x}$;
(3)若設(shè)x2=x1+△x,分析(1)(2)問(wèn)中的平均變化率的幾何意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知F1,F(xiàn)2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),其離心率為e,點(diǎn)B的坐標(biāo)為(0,b),直線F1B與雙曲線C的兩條漸近線分別交于P、Q兩點(diǎn),線段PQ的垂直平分線與x軸,直線F1B的交點(diǎn)分別為M,R,若△RMF1與△PQF2的面積之比為e,則雙曲線C的離心率為( 。
A.$\frac{\sqrt{6}}{2}$B.$\frac{3}{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.f(x)是定義在R上的函數(shù),其導(dǎo)函數(shù)為f′(x),若f(x)-f′(x)<1,f(0)=2016,則不等式f(x)>2015•ex+1(其中e為自然對(duì)數(shù)的底數(shù))的解集為(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.用行列式解關(guān)于x,y的方程組:
$\left\{\begin{array}{l}{3mx-4y=m}\\{3x+(m-5)y=1}\end{array}\right.$(其中m∈R),并對(duì)解的情況進(jìn)行討論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若圓心在第四象限,半徑為$\sqrt{10}$的圓C與直線y=3x相切于坐標(biāo)原點(diǎn)O,則圓C的方程是( 。
A.(x-2)2+(y+1)2=10B.(x-3)2+(y+1)2=10C.(x-1)2+(y+3)2=10D.(x+1)2+(y-3)2=10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)函數(shù)f(x)=ax+(k+1)a-x(a>0且a≠1)是定義在R上的奇函數(shù).
(1)求k的值;
(2)若${\;}{f(1)=\frac{3}{2}}$,求函數(shù)y=g(x)=a2x+a-2x-4mf(x)(m∈R)在[0,1]上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案