18.已知sin$\frac{α}{2}$=-$\frac{3}{5}$,cos$\frac{α}{2}$=-$\frac{4}{5}$,則角α是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

分析 根據(jù)二倍角的概念,求出sinα>0,cosα>0,即可得出α是第一象限角.

解答 解:∵sin$\frac{α}{2}$=-$\frac{3}{5}$,cos$\frac{α}{2}$=-$\frac{4}{5}$,
∴sinα=2sin$\frac{α}{2}$cos$\frac{α}{2}$=2×(-$\frac{3}{5}$)×(-$\frac{4}{5}$)=$\frac{24}{25}$>0,
cosα=cos2$\frac{α}{2}$-sin2$\frac{α}{2}$=${(-\frac{4}{5})}^{2}$-${(-\frac{3}{5})}^{2}$=$\frac{7}{25}$>0,
∴角α是第一象限角.
故選:A.

點評 本題考查了二倍角的正弦、余弦公式的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知非零向量$\overrightarrow{a}$,$\overrightarrow$,“$\overrightarrow{a}$∥$\overrightarrow$”是“$\overrightarrow{a}$∥($\overrightarrow{a}$+$\overrightarrow$)”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知點A(2,-4),B(4,6),求線段AB中點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,內(nèi)角A,B,C的對邊為a,b,c,己知2cos2$\frac{A}{2}$+(cosB-$\sqrt{3}$sinB)cosC=1
(Ⅰ)求角C的值;
(Ⅱ)若b=2,且△ABC的面積取值范圍為[$\frac{\sqrt{3}}{2}$,$\sqrt{3}$],求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)函數(shù)f(x)=x2-x-$\frac{4x}{x-1}$(x<0),g(x)=x2+bx-2(x>0),b∈R,若f(x)圖象上存在兩個不同點A,B與g(x)圖象上兩點A′,B′關(guān)于y軸對稱,則b的取值范圍是(4$\sqrt{2}$-5,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線(a+2)x+(1-a)y-3=0與直線(a+2)x+(2a+3)y+2=0不相交,則實數(shù)a=-2或-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若展開式(x-1)7,并按x的降次冪排列,則系數(shù)最大的項是( 。
A.第4項和第5項B.第4項C.第5項D.第6項

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.雙流中學(xué)食堂旁邊有一塊矩形空地,學(xué)校想要在這塊空地上修建一個內(nèi)接四邊形EFGH花壇(如圖所示),該花壇的四個頂點分別落在矩形的四條邊上,已知AB=a(a>10),BC=10,且 AE=AH=CG=CF,設(shè)AE=x,花壇EFGH的面積記為S(x).
(1)求S(x)的解析式,并指出這個函數(shù)的定義域;
(2)當(dāng)x為何值時,花壇面積S(x)最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)F(0,1),點P在x軸上,點Q在y軸上,$\overrightarrow{QN}$=2$\overrightarrow{QP}$,$\overrightarrow{QP}$⊥$\overrightarrow{PF}$,當(dāng)點P在x軸上運動時,點N的軌跡為曲線C.
(1)求曲線C的方程;
(2)過點F的直線l交曲線C于A,B兩點,且曲線C在A,B兩點處的切線相交于點M,若△MAB的三邊成等差數(shù)列,求此時點M到直線AB的距離.

查看答案和解析>>

同步練習(xí)冊答案