13.設(shè)函數(shù)f(x)=x2-x-$\frac{4x}{x-1}$(x<0),g(x)=x2+bx-2(x>0),b∈R,若f(x)圖象上存在兩個(gè)不同點(diǎn)A,B與g(x)圖象上兩點(diǎn)A′,B′關(guān)于y軸對(duì)稱,則b的取值范圍是(4$\sqrt{2}$-5,1).

分析 根據(jù)題意條件等價(jià)為f(-x)=g(x)在(0,+∞)上有兩個(gè)不同的解,利用參數(shù)分離法,構(gòu)造函數(shù),求函數(shù)的導(dǎo)數(shù),研究函數(shù)的單調(diào)性和極值,利用數(shù)形結(jié)合進(jìn)行求解即可得到結(jié)論.

解答 解:∵(x)圖象上存在兩個(gè)不同點(diǎn)A,B與g(x)圖象上兩點(diǎn)A′,B′關(guān)于y軸對(duì)稱,
∴f(-x)=g(x)在(0,+∞)上有兩解,即x-$\frac{4x}{x+1}$=bx-2有兩解,整理得b=$\frac{{x}^{2}-x+2}{{x}^{2}+x}$=1-$\frac{2x-2}{{x}^{2}+x}$.
設(shè)h(x)=$\frac{{x}^{2}-x+2}{{x}^{2}+x}$,則h′(x)=$\frac{(2x-1)({x}^{2}+x)-({x}^{2}-x+2)(2x+1)}{({x}^{2}+x)^{2}}$=$\frac{2({x}^{2}-2x-1)}{({x}^{2}+x)^{2}}$.
令h′(x)=0,得x2-2x-1=0,解得x=1+$\sqrt{2}$或x=1-$\sqrt{2}$(舍).
當(dāng)0<x<1+$\sqrt{2}$時(shí),h′(x)<0,函數(shù)h(x)遞減,
當(dāng)x>1+$\sqrt{2}$時(shí),h′(x)>0,函數(shù)h(x)遞增,
則當(dāng)x=1+$\sqrt{2}$時(shí),h(x)取得極小值h(1+$\sqrt{2}$)=$\frac{3+2\sqrt{2}-1-\sqrt{2}+2}{3+2\sqrt{2}+1+\sqrt{2}}$=$\frac{\sqrt{2}+4}{3\sqrt{2}+4}$=4$\sqrt{2}$-5,
當(dāng)x→+∞時(shí),h(x)→1,
∵b=h(x)有兩解,∴b<1.
∴b的取值范圍是(4$\sqrt{2}$-5,1).
故答案為(4$\sqrt{2}$-5,1).

點(diǎn)評(píng) 本題主要考查函數(shù)與方程的應(yīng)用,考查函數(shù)圖象的對(duì)稱變換,函數(shù)交點(diǎn)個(gè)數(shù)及位置的判定,根據(jù)條件轉(zhuǎn)化為f(-x)=g(x)在(0,+∞)上有兩個(gè)不同的解是解決本題的關(guān)鍵.,綜合性強(qiáng),難度較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.復(fù)數(shù)z=-1+i(i是虛數(shù)單位)的虛部為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知菱形ABCD邊長(zhǎng)為2,$∠B=\frac{π}{3}$,點(diǎn)P滿足$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,λ∈R,若$\overrightarrow{BD}•\overrightarrow{CP}$=-3,則λ的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.化簡(jiǎn):cos2α+cos2(α-$\frac{π}{3}$)+cos2(α+$\frac{π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{(x-y-1)(2x+y-5)≥0}\\{0≤x≤2}\end{array}\right.$,則t=$\frac{x+y}{x+1}$的取值范圍是[-1,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知sin$\frac{α}{2}$=-$\frac{3}{5}$,cos$\frac{α}{2}$=-$\frac{4}{5}$,則角α是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知數(shù)列{an}的首項(xiàng)為a1=1,且滿足an+1=$\frac{1}{2}$an+$\frac{1}{{2}^{n}}$,則此數(shù)列的第4項(xiàng)是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列函數(shù)中與函數(shù)y=x相等的是( 。
A.y=|x|B.$y=\root{3}{x^3}$C.$y=\sqrt{x^2}$D.$y=\frac{x^2}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點(diǎn)為F(1,0),左頂點(diǎn)到點(diǎn)F的距離為$\sqrt{2}$+1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)F,斜率為k的直線l與橢圓E交于A,B兩點(diǎn),且與短軸交于點(diǎn)C,若△OAF與△OBC的面積相等,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案