【題目】已知圓,圓,動圓與圓外切并與圓內(nèi)切,圓心的軌跡為曲線.

1)求的方程;

2)若直線與曲線交于兩點,問是否在軸上存在一點,使得當(dāng)變動時總有?若存在,請說明理由.

【答案】12

【解析】

試題(1)利用橢圓定義求軌跡方程:先由動圓與圓外切并與圓內(nèi)切,得,從而,再由橢圓的定義可知,曲線是以為左右焦點,長半軸長為2,短半軸為的橢圓(左頂點除外),其方程為2)條件就是,利用坐標(biāo)化簡得:設(shè),則,再聯(lián)立直線方程與橢圓方程,消去y,利用韋達(dá)定理得,代入化簡得

試題解析:(1)得圓的圓心為,半徑;圓的圓心,半徑.設(shè)圓的圓心為,半徑為.因為圓與圓外切并與圓內(nèi)切,所以

由橢圓的定義可知,曲線是以為左右焦點,長半軸長為2,短半軸為的橢圓(左頂點除外),其方程為

2)假設(shè)存在滿足.設(shè)

聯(lián)立,由韋達(dá)定理有

,其中恒成立,

(顯然的斜率存在),故,即,

兩點在直線上,故代入得:

即有

代入即有:,要使得的取值無關(guān),當(dāng)且僅當(dāng)時成立,綜上所述存在,使得當(dāng)變化時,總有

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l與曲線C)交于不同的兩點A,B,O為坐標(biāo)原點.

1)若,求證:曲線C是一個圓;

2)若曲線C、,是否存在一定點Q,使得為定值?若存在,求出定點Q和定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=sin 3x-cos 3x+1的圖象向左平移個單位長度,得到函數(shù)g(x)的圖象,給出下列關(guān)于g(x)的結(jié)論:

①它的圖象關(guān)于直線x=對稱;

②它的最小正周期為;

③它的圖象關(guān)于點(,1)對稱;

④它在[]上單調(diào)遞增.

其中所有正確結(jié)論的編號是(

A.①②B.②③C.①②④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了了解高一年級學(xué)生學(xué)習(xí)數(shù)學(xué)的狀態(tài),從期中考試成績中隨機抽取50名學(xué)生的數(shù)學(xué)成績,按成績分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

(1)由頻率分布直方圖,估計這50名學(xué)生數(shù)學(xué)成績的中位數(shù)和平均數(shù)(保留到0.01);

(2)該校高一年級共有1000名學(xué)生,若本次考試成績90分以上(含90分)為優(yōu)秀等次,則根據(jù)頻率分布直方圖估計該校高一學(xué)生數(shù)學(xué)成績達(dá)到優(yōu)秀等次的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱中,底面是矩形,交于點,.

(1)證明:平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長為2,分別為的中點,則以下說法錯誤的是(

A.平面截正方體所的截面周長為

B.存在上一點使得平面

C.三棱錐體積相等

D.存在上一點使得平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,為等邊三角形,平面平面.

(1)證明:平面平面;

(2)若為線段的中點,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三國時代吳國數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得.設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已如橢圓C:的兩個焦點與其中一個頂點構(gòu)成一個斜邊長為4的等腰直角三角形.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)設(shè)動直線l交橢圓CP,Q兩點,直線OPOQ的斜率分別為k,k.,求證OPQ的面積為定值,并求此定值.

查看答案和解析>>

同步練習(xí)冊答案