下列函數(shù)中,滿足“對任意的x1,x2∈R,當(dāng)x1<x2時,都有f(x1)<f(x2)”的是( 。
A、y=log2x
B、y=-
1
x
C、y=2x
D、y=x2
考點:對數(shù)函數(shù)的單調(diào)性與特殊點
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得函數(shù)f(x)為R上的增函數(shù),逐一判斷各個選項中的函數(shù)是否滿足這一條件,從而得出結(jié)論.
解答: 解:由題意可得函數(shù)f(x)為R上的增函數(shù),由于y=log2x 的定義域為(0,+∞),故不滿足條件,故排除A.
由于y=-
1
x
的定義域為(-∞,0)∪(0,+∞),不是R,故排除B.
由于y=2x的定義域為R,且為R上的增函數(shù),故滿足條件.
由于y=x2在R上沒有單調(diào)性,故排除D,
故選:C.
點評:本題主要考查函數(shù)的單調(diào)性的定義,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面向量
m
=(cos2
x
2
,
3
sinx),
n
=(2,1),函數(shù)f(x)=
m
n

(1)當(dāng)x∈[-
π
3
,
π
2
]時,求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)銳角△ABC的三個內(nèi)角ABC對應(yīng)一邊分別是a,b,c,若f(c-
π
6
)=
2
+1,且b=4,△ABC的面積等于b,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα-cosα=2sinα•cosα,則sin2α的值為( 。
A、
-1-
5
2
B、
-1+
5
2
C、
-1+
5
4
D、
-1-
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,函數(shù)y=
1+x
+log3
(4-x)的定義域為集合A.
(1)求集合A;
(2)集合B={x|2<x≤10},求韋恩圖中陰影部分表示的集合C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

冪函數(shù)f(x)的圖象過點(3,
427
),則f(x)的解析式是(  )
A、f(x)=
43x
B、f(x)=
x34
C、f(x)=
3x4
D、f(x)=
4x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈(0,
π
2
),sina=m,n∈Z,求sin(
2
+a)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x∈R|ax2-2x+1=0}的子集恰有兩個,則實數(shù)a的集合為( 。
A、{a|a<1}
B、{a|a<1且a≠0}
C、{0,1}
D、{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(1,1),B、C為拋物線y2=x上任意兩點,∠ABC=90°,求AC的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-|x3-2x2+x|(x<1)
lnx(x≥1)
,若命題“?t∈R,且t≠0,使得f(t)≥kt”是假命題,則實數(shù)k的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案