14.設(shè)炮彈發(fā)射角為α,發(fā)射速度為v0
(1)求子彈彈道曲線的參數(shù)方程(不計(jì)空氣阻力)
(2)若v0=100m/s,α=$\frac{π}{6}$,當(dāng)炮彈發(fā)出2秒時(shí),
①求炮彈高度;
②求出炮彈的射程.

分析 (1)利用正交分解可得子彈彈道曲線的參數(shù)方程.
(2)①把v0=100m/s,α=$\frac{π}{6}$,t=2代入(1)的參數(shù)方程即可得出.
②x=2×100×cos$\frac{π}{6}$,y=h,炮彈的射程S=$\sqrt{{x}^{2}+{y}^{2}}$,代入計(jì)算即可得出.

解答 解:(1)子彈彈道曲線的參數(shù)方程為$\left\{\begin{array}{l}{x=t{v}_{0}cosα}\\{y=t{v}_{0}sinα-\frac{1}{2}g{t}^{2}}\end{array}\right.$(t為時(shí)間).
(2)∵v0=100m/s,α=$\frac{π}{6}$,
∴當(dāng)t=2時(shí),
①h=2×100sin$\frac{π}{6}$-4.9×22=80.4m.(g=9.8)
②x=2×100×cos$\frac{π}{6}$=100$\sqrt{3}$,y=h,
炮彈的射程S=$\sqrt{{x}^{2}+{y}^{2}}$=$\sqrt{(100\sqrt{3})^{2}+80.{4}^{2}}$≈175.2m.

點(diǎn)評(píng) 本題考查了物理斜拋類型的參數(shù)方程的應(yīng)用、位移的正交分解,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在平面直角坐標(biāo)系中,經(jīng)伸縮變換后曲線方程x2+y2=4變換為橢圓方程x′2+$\frac{y{′}^{2}}{4}$=1,此伸縮變換公式是(  )
A.$\left\{\begin{array}{l}{x=\frac{1}{2}x′}\\{x=y′}\end{array}\right.$B.$\left\{\begin{array}{l}{x=2x′}\\{y=y′}\end{array}\right.$C.$\left\{\begin{array}{l}{y=4x′}\\{y=y′}\end{array}\right.$D.$\left\{\begin{array}{l}{x=2x′}\\{y=4y′}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在⊙O中,弦AF交直徑CD于點(diǎn)M,弦的延長(zhǎng)線交CD的延長(zhǎng)線于點(diǎn)E,M、N分別是AF、AB的中點(diǎn).
(Ⅰ)求證:OE•ME=NE•AE;
(Ⅱ)若$OM=\frac{1}{2},BE=\frac{1}{2}AB=\sqrt{3}$,求∠E的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)f(x)=$\frac{lnx}{x}$,g(x)=$\frac{1}{2}$mx-$\frac{1}{x}$+m-1(m為整數(shù)).
(1)求曲線y=f(x)在點(diǎn)($\frac{1}{e}$,f($\frac{1}{e}$))處的切線方程;
(2)求函數(shù)y=g(x)的單調(diào)遞減區(qū)間;
(3)若x>0時(shí),函數(shù)y=f(x)的圖象始終在函數(shù)y=g(x)的圖象的下方,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=(x-k)ex(k∈R).
(Ⅰ)若f(x)在區(qū)間(-1,1)上是增函數(shù),求k的取值范圍;
(Ⅱ)求f(x)在區(qū)間[0,1]上的最小值;
(Ⅲ)若k=0,是否存在實(shí)數(shù)a,使得對(duì)任意的x1,x2∈(a,+∞),當(dāng)x1<x2時(shí),恒有x1(f(x2)-f(a))-x2(f(x1)-f(a))>a(f(x2)-f(x1))成立?若存在,求a的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在直角坐標(biāo)系xOy中,曲線C的方程為y2=10x,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求曲線C的極坐標(biāo)方程和直線l的普通方程;
(Ⅱ)設(shè)直線l與曲線C交于A、B兩點(diǎn),求弦長(zhǎng)|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在R上定義運(yùn)算:x?y=x(1-y).若關(guān)于x的不等式x?(x-a)>0的解集是集合{x|-1≤x≤1}的子集,則實(shí)數(shù)a的取值范圍是[-2,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,已知$\overrightarrow{OA}$=$\overrightarrow a$,$\overrightarrow{OB}$=$\overrightarrow b$,且|$\overrightarrow b$|=2|$\overrightarrow a$|=2,任意點(diǎn)M關(guān)于點(diǎn)A的對(duì)稱點(diǎn)為N,點(diǎn)N關(guān)于點(diǎn)B的對(duì)稱點(diǎn)為P,則$\overrightarrow{MP}$•($\overrightarrow{OA}$+$\overrightarrow{OB}$)=( 。
A.6B.-6C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2-ax-alnx(a∈R).
(1)當(dāng)x=1時(shí),函數(shù)f(x)取得極值,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)x∈[e,+∞)時(shí),f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案