分析 (Ⅰ)利用平面與平面平行的性質(zhì),可在圖中畫出這個(gè)正方形;
(Ⅱ)求出MH=$\sqrt{E{H}^{2}-E{M}^{2}}$=6,AH=10,HB=6,即可求平面a把該長(zhǎng)方體分成的兩部分體積的比值.
解答 解:(Ⅰ)交線圍成的正方形EFGH如圖所示;
(Ⅱ)作EM⊥AB,垂足為M,則AM=A1E=4,EB1=12,EM=AA1=8.
因?yàn)镋FGH為正方形,所以EH=EF=BC=10,
于是MH=$\sqrt{E{H}^{2}-E{M}^{2}}$=6,AH=10,HB=6.
因?yàn)殚L(zhǎng)方體被平面α分成兩個(gè)高為10的直棱柱,
所以其體積的比值為$\frac{9}{7}$.
點(diǎn)評(píng) 本題考查平面與平面平行的性質(zhì),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (kπ-$\frac{1}{4}$,kπ+$\frac{3}{4}$,),k∈z | B. | (2kπ-$\frac{1}{4}$,2kπ+$\frac{3}{4}$),k∈z | ||
C. | (k-$\frac{1}{4}$,k+$\frac{3}{4}$),k∈z | D. | ($2k-\frac{1}{4}$,2k+$\frac{3}{4}$),k∈z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x0∈(0,+∞),lnx0≠x0-1 | B. | ?x0∉(0,+∞),lnx0=x0-1 | ||
C. | ?x∈(0,+∞),lnx≠x-1 | D. | ?x∉(0,+∞),lnx=x-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -10 | B. | 6 | C. | 14 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com