分析 求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為即a≥$\frac{lnx+1}{2x}$在(0,+∞)恒成立,令g(x)=$\frac{lnx+1}{2x}$,x∈(0,+∞),根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.
解答 解:f′(x)=lnx-2ax+1,
若f(x)在(0,+∞)遞減,
則lnx-2ax+1≤0在(0,+∞)恒成立,
即a≥$\frac{lnx+1}{2x}$在(0,+∞)恒成立,
令g(x)=$\frac{lnx+1}{2x}$,x∈(0,+∞),
g′(x)=-$\frac{lnx}{{2x}^{2}}$,
令g′(x)>0,解得:0<x<1,
令g′(x)<0,解得:x>1,
故g(x)在(0,1)遞增,在(1,+∞)遞減,
故g(x)max=g(1)=$\frac{1}{2}$,
故a≥$\frac{1}{2}$,
故答案為:[$\frac{1}{2}$,+∞).
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | $\frac{1}{3}$ | C. | $\frac{11}{3}$ | D. | -1或$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{6}$ | B. | $2\sqrt{7}$ | C. | $4\sqrt{2}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com