【題目】某地區(qū)擬建立一個藝術(shù)搏物館,采取競標(biāo)的方式從多家建筑公司選取一家建筑公司,經(jīng)過層層篩選,甲、乙兩家建筑公司進(jìn)入最后的招標(biāo).現(xiàn)從建筑設(shè)計院聘請專家設(shè)計了一個招標(biāo)方案:兩家公司從6個招標(biāo)總是中隨機抽取3個總題,已知這6個招標(biāo)問題中,甲公司可正確回答其中4道題目,而乙公司能正面回答每道題目的概率均為 ,甲、乙兩家公司對每題的回答都是相獨立,互不影響的.
(1)求甲、乙兩家公司共答對2道題目的概率;
(2)請從期望和方差的角度分析,甲、乙兩家哪家公司競標(biāo)成功的可能性更大?

【答案】
(1)解:由題意可知,所求概率
(2)解:設(shè)甲公司正確完成面試的題數(shù)為X,則X的取值分別為1,2,3. ,

則X的分布列為:

X

1

2

3

P

設(shè)乙公司正確完成面試的題為Y,則Y取值分別為0,1,2,3. , ,

則Y的分布列為:

Y

0

1

2

3

P

.(或∵ ,∴

由E(X)=D(Y),D(X)<D(Y)可得,甲公司競標(biāo)成功的可能性更大.


【解析】(1)利用獨立重復(fù)試驗的概率公式求解甲、乙兩家公司共答對2道題目的概率.(2)設(shè)甲公司正確完成面試的題數(shù)為X,則X的取值分別為1,2,3.求出概率,得到X的分布列求解期望;乙公司正確完成面試的題為Y,則Y取值分別為0,1,2,3.求出概率得到分布列,求出期望即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著資本市場的強勢進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了各個城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)研機構(gòu)在該市隨機抽取了位市民進(jìn)行調(diào)查,得到的列聯(lián)表(單位:人)

(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過的前提下認(rèn)為使用共享單車的情況與年齡有關(guān)?(結(jié)果保留3位小數(shù))

(2)現(xiàn)從所抽取的歲以上的市民中利用分層抽樣的方法再抽取5人

(i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);

(ii)從這5人中,再隨機抽取2人贈送一件禮物,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.

參考公式及數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校有高一、高二、高三三個年級,已知高一、高二、高三的學(xué)生數(shù)之比為2:3;5,現(xiàn)從該學(xué)校中抽取一個容量為100的樣本,從高一學(xué)生中用簡單隨機抽樣抽取樣本時,學(xué)生甲被抽到的概率為 ,則該學(xué)校學(xué)生的總數(shù)為(
A.200
B.400
C.500
D.1000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)經(jīng)過點( ,1),以原點為圓心,橢圓短半軸長為半徑的圓經(jīng)過橢圓的焦點.
(1)求橢圓C的方程;
(2)設(shè)過點(﹣1,0)的直線l與橢圓C相交于A、B兩點,試問在x軸上是否存在一個定點M,使得 恒為定值?若存在,求出該定值及點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=2AD,E為邊AB的中點,將△ADE沿直線DE翻轉(zhuǎn)成△A1DE(A1平面ABCD),若M、O分別為線段A1C、DE的中點,則在△ADE翻轉(zhuǎn)過程中,下列說法錯誤的是(
A.與平面A1DE垂直的直線必與直線BM垂直
B.異面直線BM與A1E所成角是定值
C.一定存在某個位置,使DE⊥MO
D.三棱錐A1﹣ADE外接球半徑與棱AD的長之比為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+1|+|x﹣3|,g(x)=a﹣|x﹣2|. (Ⅰ)若關(guān)于x的不等式f(x)<g(x)有解,求實數(shù)a的取值范圍;
(Ⅱ)若關(guān)于x的不等式f(x)<g(x)的解集為 ,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某手機賣場對市民進(jìn)行國產(chǎn)手機認(rèn)可度的調(diào)查,隨機抽取100名市民,按年齡(單位:歲)進(jìn)行統(tǒng)計的頻數(shù)分布表和頻率分布直方圖如下:

分組(歲)

頻數(shù)

[25,30)

x

[30,35)

y

[35,40)

35

[40,45)

30

[45,50]

10

合計

100

(Ⅰ)求頻率分布表中x、y的值,并補全頻率分布直方圖;
(Ⅱ)在抽取的這100名市民中,按年齡進(jìn)行分層抽樣,抽取20人參加國產(chǎn)手機用戶體驗問卷調(diào)查,現(xiàn)從這20人重隨機抽取2人各贈送精美禮品一份,設(shè)這2名市民中年齡在[35,40)內(nèi)的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) . (Ⅰ)證明:f(x)≥5;
(Ⅱ)若f(1)<6成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某花店每天以每枝5元的價格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝10元的價格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進(jìn)16枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得如表:

日需求量n

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購進(jìn)16枝玫瑰花,X表示當(dāng)天的利潤(單位:元),求X的分布列,數(shù)學(xué)期望及方差;
(ii)若花店計劃一天購進(jìn)16枝或17枝玫瑰花,你認(rèn)為應(yīng)購進(jìn)16枝還是17枝?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案