【題目】已知橢圓C: + =1(a>b>0)經(jīng)過(guò)點(diǎn)( ,1),以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓經(jīng)過(guò)橢圓的焦點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)過(guò)點(diǎn)(﹣1,0)的直線l與橢圓C相交于A、B兩點(diǎn),試問(wèn)在x軸上是否存在一個(gè)定點(diǎn)M,使得 恒為定值?若存在,求出該定值及點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)
解:由圓的方程x2+y2=b2,由橢圓短半軸長(zhǎng)為半徑的圓經(jīng)過(guò)橢圓的焦點(diǎn),則b=c,
∴a2=2b2,
將( ,1)代入橢圓方程 ,解得:b2=2,則a2=4,
∴橢圓的標(biāo)準(zhǔn)方程: ;
(2)
解:設(shè)A(x1,y1),B(x2,y2),M(m,0),
當(dāng)直線k的斜率存在,設(shè)直線l的方程為:y=k(x+1),
則 ,整理得:(1+2k2)x2+4k2x+2k2﹣4=0,
∴x1+x2=﹣ ,x1x2= ,
則y1y2=k(x1+1)×k(x2+1)=k2(x1x2+x1+x2+1)=k2( ﹣ +1)=﹣ ,
=(x1﹣m)(x2﹣m)+y1y2=[ ﹣m×(﹣ )+m2]+(﹣ ),
= = 為定值,
則 = ,解得:m=﹣ ,
則 =﹣ ,
當(dāng)直線l的斜率k不存在時(shí),點(diǎn)A(﹣1, ),B(﹣1,﹣ ),
此時(shí),當(dāng)m=﹣ 時(shí),則 =(﹣1﹣m)(﹣1﹣m)﹣ =﹣ ,
綜上可知:存在點(diǎn)M(﹣ ,0),使得 =﹣ .
【解析】(1)由題意可知:b=c,將點(diǎn)代入橢圓方程,即可求得a和b的值,求得橢圓方程;(2)分類討論,當(dāng)斜率存在時(shí),代入橢圓方程,由韋達(dá)定理及向量數(shù)量積的坐標(biāo)運(yùn)算,由 恒為定值即可求得m的值,求得 的值及M點(diǎn)坐標(biāo);當(dāng)直線l的斜率k不存在時(shí),點(diǎn)A(﹣1, ),B(﹣1,﹣ ),則m=﹣ 時(shí),求得 的值及M點(diǎn)坐標(biāo).
【考點(diǎn)精析】本題主要考查了橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí)點(diǎn),需要掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù) 的圖象向左平移 個(gè)單位長(zhǎng)度后,所得函數(shù)g(x)的圖象關(guān)于原點(diǎn)對(duì)稱,則函數(shù)f(x)在 的最大值為( )
A.0
B.
C.
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an},an=(2n+m)+(﹣1)n(3n﹣2)(m∈N* , m與n無(wú)關(guān)),若 a2i﹣1≤k2﹣2k﹣1對(duì)一切m∈N*恒成立,則實(shí)數(shù)k的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定命題p:“若a2017>﹣1,則a>﹣1”;命題q:“x∈R,x2tanx2>0”,則下列命題中,真命題的是( )
A.p∨q
B.(¬p)∨q
C.(¬p)∧q
D.(¬p)∧(¬q)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若f(x)為奇函數(shù),且x0是y=f(x)﹣ex的一個(gè)零點(diǎn),則下列函數(shù)中,﹣x0一定是其零點(diǎn)的函數(shù)是( )
A.y=f(﹣x)e﹣x﹣1
B.y=f(x)ex+1
C.y=f(x)ex﹣1
D.y=f(﹣x)ex+1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)擬建立一個(gè)藝術(shù)搏物館,采取競(jìng)標(biāo)的方式從多家建筑公司選取一家建筑公司,經(jīng)過(guò)層層篩選,甲、乙兩家建筑公司進(jìn)入最后的招標(biāo).現(xiàn)從建筑設(shè)計(jì)院聘請(qǐng)專家設(shè)計(jì)了一個(gè)招標(biāo)方案:兩家公司從6個(gè)招標(biāo)總是中隨機(jī)抽取3個(gè)總題,已知這6個(gè)招標(biāo)問(wèn)題中,甲公司可正確回答其中4道題目,而乙公司能正面回答每道題目的概率均為 ,甲、乙兩家公司對(duì)每題的回答都是相獨(dú)立,互不影響的.
(1)求甲、乙兩家公司共答對(duì)2道題目的概率;
(2)請(qǐng)從期望和方差的角度分析,甲、乙兩家哪家公司競(jìng)標(biāo)成功的可能性更大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0,b>0,c>0,函數(shù)f(x)=|x+a|﹣|x﹣b|+c的最大值為10.
(1)求a+b+c的值;
(2)求 (a﹣1)2+(b﹣2)2+(c﹣3)2的最小值,并求出此時(shí)a、b、c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,以拋物線C上的點(diǎn)M(x0 , 2 )(x0> )為圓心的圓與線段MF相交于點(diǎn)A,且被直線x= 截得的弦長(zhǎng)為 | |,若 =2,則| |= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com