下列關(guān)系正確的是( 。
A、0∈NB、1⊆R
C、{π}⊆QD、-3∉Z
考點:元素與集合關(guān)系的判斷
專題:集合
分析:根據(jù)各字母表示的集合,判斷元素與集合的關(guān)系.
解答: 解:N為自然數(shù),0是自然數(shù),故A正確;
1是元素,R是集合,元素和集合的關(guān)系不是“⊆”,故B錯;
π是無理數(shù),而Q是有理數(shù),故C不正確;
Z表示整數(shù)集合,-3是整數(shù),故D不正確;
故選A.
點評:本題主要考查元素與集合的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),f(x)=f(x+4),且x∈(-1,0)時,f(x)=2x+
1
5
,則f(log220)=( 。
A、1
B、
4
5
C、-1
D、-
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2-
3
x

(Ⅰ)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性并用定義加以證明;
(Ⅱ)求函數(shù)f(x)在區(qū)間[2,5]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式x2-x+1<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“若α=
π
3
,則cosα=
1
2
”的逆否命題是( 。
A、若α≠
π
3
,則cosα≠
1
2
B、若α=
π
3
,則cosα≠
1
2
C、若cosα≠
1
2
,則α≠
π
3
D、若cosα=
1
2
,則α=
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=kx+b在坐標(biāo)系中的位置如圖,則(  )     
A、k=-
1
2
,b=-1
B、k=-
1
2
,b=1
C、k=
1
2
,b=-1
D、k=
1
2
,b=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在古希臘數(shù)學(xué)家阿基米德的墓碑上刻著一個圓柱,圓柱內(nèi)有一個球,這個球與圓柱的側(cè)面及兩個底面都相切,相傳這個圖形表達(dá)了阿基米德最引以自豪的發(fā)現(xiàn).記圓柱的體積是球的體積的m倍,圓柱的表面積是球表面積的n倍,則m與n的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x-2的定義域為( 。
A、(0,+∞)
B、[0,+∞)
C、{x∈R|x≠0}
D、R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知條件p:log0.5(x+1)≥-2,q:x2-2ax+(a2-1)≤0,若¬p是¬q的充分條件,則a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案