【題目】已知實(shí)數(shù)λ>0,設(shè)函數(shù)f(x)=eλx﹣ .
(Ⅰ)當(dāng)λ=1時(shí),求函數(shù)g(x)=f(x)+lnx﹣x的極值;
(Ⅱ)若對任意x∈(0,+∞),不等式f(x)≥0恒成立,求λ的最小值.
【答案】解:(Ⅰ)λ=1時(shí),g(x)=ex﹣x,g′(x)=ex﹣1,
令g′(x)<0,解得:x<0,令g′(x)>0,解得:x>0,
故g(x)在(﹣∞,0)遞減,在(0,+∞)遞增,
故g(x)無極大值,極小值是g(0)=1;
(Ⅱ)當(dāng)0<x≤1時(shí),易知不等式eλx﹣ ≥0恒成立,
x>1時(shí),由題設(shè)得不等式λeλx≥lnx,即λxeλx≥lnxelnx(*)恒成立,
設(shè)φ(t)=tet(t>0),
則由φ′(t)=et(1+t)>0,
知φ(t)在(0,+∞)遞增,
于是,x>1時(shí),由(*)知φ(λx)≥φ(lnx),
即λ≥ 在(1,+∞)恒成立,
故所求λ的最小值即為函數(shù)p(x)= (x>1)的最大值,
∵p′(x)= ,故1<x<e時(shí),p′(x)>0,p(x)遞增,
x>e時(shí),p′(x)<0,函數(shù)p(x)遞減,
綜上,λmin=p(x)max=p(e)=
【解析】(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;(2)進(jìn)行參變分離將問題轉(zhuǎn)化為λ≥ 在(1,+∞)恒成立,所求λ的最小值即為函數(shù)P(x)的最大值,根據(jù)函數(shù)的單調(diào)性求出λ的最小值即可.
【考點(diǎn)精析】通過靈活運(yùn)用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,PC⊥AD.底面ABCD為梯形,AB∥DC,AB⊥BC,PA=AB=BC,點(diǎn)E在棱PB上,且PE=2EB.
(1)求證:平面PAB⊥平面PCB;
(2)求證:PD∥平面EAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F為拋物線C:y2=4x的焦點(diǎn),過F作兩條互相垂直的直線l1 , l2 , 直線l1與C交于A、B兩點(diǎn),直線l2與C交于D、E兩點(diǎn),則|AB|+|DE|的最小值為( )
A.16
B.14
C.12
D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線C由上半橢圓 和部分拋物線 連接而成,C1與C2的公共點(diǎn)為A,B,其中C1的離心率為 .
(1)求a,b的值;
(2)過點(diǎn)B的直線l與C1 , C2分別交于點(diǎn)P,Q(均異于點(diǎn)A,B),是否存在直線l,使得PQ為直徑的圓恰好過點(diǎn)A,若存在直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(cos x,sin x), =(cos ,﹣sin ),若f(x)= ﹣| |2
(1)求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)若x∈[﹣ , ],求函數(shù)f(x)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 , 是非零不共線的向量,設(shè) = + ,定義點(diǎn)集M={K| = },當(dāng)K1 , K2∈M時(shí),若對于任意的r≥2,不等式| |≤c| |恒成立,則實(shí)數(shù)c的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=ln(x+m)﹣nlnx.
(1)當(dāng)m=1,n>0時(shí),求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)n=1時(shí),函數(shù)g(x)=(m+2x)f(x)﹣am,若存在m>0,使得g(x)>0恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com