【題目】已知函數(shù).
(1)a=1時(shí),求函數(shù)f(x)的極值;
(2)若,求f(x)的最小值g(a)的取值范圍.
【答案】(1)f(x)極小值e﹣1,無極大值;(2)[ln2﹣1,e﹣1].
【解析】
(1)代入求導(dǎo)可得,再求導(dǎo)分析單調(diào)性與最值可知,進(jìn)而求得的極值點(diǎn)與單調(diào)區(qū)間以及極值.
(2)求導(dǎo)后構(gòu)造導(dǎo)函數(shù)得出,再根據(jù)(1)中的結(jié)論可知恒成立,進(jìn)而可得在定義域上單調(diào)遞增.再根據(jù)零點(diǎn)存在定理可知 在上有唯一解,且,進(jìn)而求得最小值,再根據(jù)隱零點(diǎn)問題消去參數(shù),再構(gòu)造函數(shù)關(guān)于極值點(diǎn)的函數(shù)分析即可.
(1)當(dāng)a=1時(shí),,則,
令h(x)=ex﹣x,當(dāng)x∈(0,+∞)時(shí),h′(x)=ex﹣1>0,
∴在(0,+∞)上,h(x)>h(0)=1,即ex>x,
令f′(x)=0,則x=1,經(jīng)檢驗(yàn),在(0,1)上,f′(x)<0,f(x)單調(diào)遞減,在(1,+∞)上,f′(x)>0,f(x)單調(diào)遞增,
∴當(dāng)x=1時(shí),函數(shù)y=f(x)取得極小值e﹣1,無極大值;
(2),令,
則,
由(1)知,當(dāng)x∈(0,+∞)時(shí),
ex>x,ex(x2﹣2x+2)﹣x>x(x2﹣2x+2)﹣x=x(x﹣1)2≥0,
∴p′(x)>0在(0,+∞)上恒成立,
∴f′(x)在定義域上單調(diào)遞增,
∵,
∴,
∴方程f′(x)=0在(0,+∞)上有唯一解,
設(shè)方程f′(x)=0的解為x0,則在(0,x0)上f′(x)<0,在(x0,+∞)上f′(x)>0,且1≤x0≤2,
∴f(x)的最小值為,
由f′(x)=0得,代入g(a)得,,
令,則,
∵﹣x2+2x﹣2=﹣(x﹣1)2﹣1≤﹣1,
∴ex(﹣x2+2x﹣2)+x≤x﹣ex<0,
∴φ(x)在[1,2]上為減函數(shù),
∴,
∴g(a)∈[ln2﹣1,e﹣1].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系. 已知曲線的極坐標(biāo)方程為 ,直線 的參數(shù)方程為 (為參數(shù)).
(I)分別求曲線的直角坐標(biāo)方程和直線 的普通方程;
(II)設(shè)曲線和直線相交于兩點(diǎn),求弦長(zhǎng)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).M是曲線上的動(dòng)點(diǎn),將線段OM繞O點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段ON,設(shè)點(diǎn)N的軌跡為曲線.以坐標(biāo)原點(diǎn)O為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)在(1)的條件下,若射線與曲線分別交于A, B兩點(diǎn)(除極點(diǎn)外),且有定點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),x∈(b﹣3,2b)是奇函數(shù),
(1)求a,b的值;
(2)若f(x)是區(qū)間(b﹣3,2b)上的減函數(shù)且f(m﹣1)+f(2m+1)>0,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.
(1)若BA,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x∈Z時(shí),求A的非空真子集個(gè)數(shù);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化工廠引進(jìn)一條先進(jìn)生產(chǎn)線生產(chǎn)某種化工產(chǎn)品,其生產(chǎn)的總成本(萬元)與年產(chǎn)量(噸)之間的函數(shù)關(guān)系式可以近似的表示為,已知此生產(chǎn)線年產(chǎn)量最大為噸.
(1)求年產(chǎn)量為多少噸時(shí),生產(chǎn)每噸產(chǎn)品的平均成本最低,并求最低成本;
(2)若每噸產(chǎn)品平均出廠價(jià)為40萬元,那么當(dāng)年產(chǎn)量為多少噸時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩圓C1:x2+y2-2x-6y-1=0和C2:x2+y2-10x-12y+45=0.
(1)求證:圓C1和圓C2相交;
(2)求圓C1和圓C2的公共弦所在直線的方程和公共弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直三棱柱中, , , ,點(diǎn)是線段上的動(dòng)點(diǎn).
(1)當(dāng)點(diǎn)是的中點(diǎn)時(shí),求證: 平面;
(2)線段上是否存在點(diǎn),使得平面平面?若存在,試求出的長(zhǎng)度;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的圖像上關(guān)于軸對(duì)稱的點(diǎn)至少有3對(duì),則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com