分析 (Ⅰ)根據題意,消去參數,即可解得方程C1的極坐標方程;
(Ⅱ)求得C3的方程,即可由OA,OB的長解得AB的長.
解答 解:(Ⅰ)將$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$(α為參數).消去參數α,化為普通方程為(x-2)2+y2=4,
即C1:x2+y2-4x=0,(2分)
將$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$代入C1:x2+y2-4x=0,得ρ2=4ρcosθ,(4分)
所以C1的極坐標方程為ρ=4cosθ.(5分)
(Ⅱ)將$\left\{\begin{array}{l}{x=2{x}^{′}}\\{y={y}^{′}}\end{array}\right.$代入C2得x′2+y′2=1,
所以C3的方程為x2+y2=1.(7分)
C3的極坐標方程為ρ=1,所以|OB=1|.
又|OA|=4cos$\frac{π}{3}$=2,
所以|AB|=|OA|-|OB|=1.(10分)
點評 本小題考查極坐標方程和參數方程、伸縮變換等基礎知識,考查運算求解能力,考查數形結合思想、化歸與轉化思想等.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{5π}{6}$ | C. | $\frac{3π}{4}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{9\sqrt{3}}{2}$ | B. | $\frac{27}{2}$ | C. | $\frac{9\sqrt{3}+27}{2}$ | D. | 9$\sqrt{3}$+$\frac{27}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | A${\;}_{100}^{14}$ | B. | A${\;}_{100}^{15}$ | C. | A${\;}_{100}^{16}$ | D. | A${\;}_{100}^{17}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com