14.若a,b∈R,則復(fù)數(shù)(a2-4a+5)+(-b2+2b-6)i所對應(yīng)的點一定落在第四象限.

分析 根據(jù)復(fù)數(shù)的幾何意義,求出點的坐標(biāo)進(jìn)行判斷即可.

解答 解:復(fù)數(shù)對應(yīng)點的坐標(biāo)為((a2-4a+5),(-b2+2b-6)),
∵a2-4a+5=(a-2)2+1>0,-b2+2b-6=-(b-1)2-5<0,
∴復(fù)數(shù)對應(yīng)點的坐標(biāo)在第四象限,
故答案為:四.

點評 本題主要考查復(fù)數(shù)的幾何意義的應(yīng)用,結(jié)合配方法,判斷點的坐標(biāo)的符號是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$(α為參數(shù)).以O(shè)為極點,x軸正半軸為極軸,并取相同的單位長度建立極坐標(biāo)系.
(Ⅰ)寫出C1的極坐標(biāo)方程;
(Ⅱ)設(shè)曲線C2:$\frac{{x}^{2}}{4}$+y2=1經(jīng)伸縮變換$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=y}\end{array}\right.$后得到曲線C3,射線θ=$\frac{π}{3}$(ρ>0)分別與C1和C3交于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在平面直角坐標(biāo)系中,A(-2,0),B(2,0),M(8,0),N(0,8),若$\overrightarrow{AP}$•$\overrightarrow{BP}$=5,$\overrightarrow{OQ}$=($\frac{1}{3}$-t)$\overrightarrow{OM}$+($\frac{2}{3}$+t)$\overrightarrow{ON}$(t為實數(shù)),則|$\overrightarrow{PQ}$|的最小值是( 。
A.4$\sqrt{2}$-3B.4$\sqrt{2}$+3C.4$\sqrt{2}$-1D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2sin(ωx),其中常數(shù)ω>0.
(1)若y=f(x)在[-$\frac{π}{4}$,$\frac{2π}{3}$]上單調(diào)遞增,求ω的取值范圍;
(2)令ω=2,將函數(shù)y=f(x)的圖象向左平移$\frac{π}{6}$個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象.
①求函數(shù)g(x)的解析式,并用“五點法”作出該函數(shù)在一個周期內(nèi)的圖象;
②對任意a∈R,求函數(shù)y=g(x)在區(qū)間[a,a+10π]上零點個數(shù)的所有可能值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=a+$\frac{2}{{{2^x}-1}}$(a∈R)是奇函數(shù).
(Ⅰ)求函數(shù)f(x)的定義域及實數(shù)a的值;
(Ⅱ)若函數(shù)g(x)滿足g(x+2)=-g(x)且x∈(0,2]時,g(x)=f(x),求g(-5)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)是奇函數(shù),且當(dāng)x>0時,f(x)=x3+2x2-1,求f(x)在R上的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求實數(shù)m取什么值時,復(fù)平面內(nèi)表示復(fù)數(shù)z=(m2-8m+15)+(m2-5m-14)i的點位于第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.海上兩小島A,B到海洋觀察站C的距離都是10km,小島A在觀察站C的北偏東20°,小島B在觀察站C的南偏東40°,則A與B的距離是( 。
A.10kmB.$10\sqrt{2}km$C.$10\sqrt{3}km$D.20km

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知等差數(shù)列{an}的前n項和為Sn,公差d=$\frac{π}{8}$,當(dāng)Sn取最小值時,n的最大值為10,則數(shù)列的首項a1的取值范圍是( 。
A.$(-\frac{5π}{8}\;,\;\;-\frac{9π}{16}]$B.$(-\frac{5π}{4}\;,\;\;-\frac{9π}{8}]$C.$[-\frac{5π}{8}\;,\;\;-\frac{9π}{16}]$D.$[-\frac{5π}{4}\;,\;\;-\frac{9π}{8}]$

查看答案和解析>>

同步練習(xí)冊答案