(08年龍巖一中沖刺文)(12分)

已知函數(shù)的圖象上點(diǎn)P(1,-2)處的切線方程為

   (Ⅰ)若時(shí)有極值,求的表達(dá)式;

   (Ⅱ)若在區(qū)間[-2,0]上單調(diào)遞增,求實(shí)數(shù)b的取值范圍.

解析:

因?yàn)楹瘮?shù)處的切線斜率為-3, 

所以 ①

②     ……………………2分

(Ⅰ)函數(shù)有極值,所以 ③ ……4分

解①②③得a=-2,b=4,c=-3,所以  …………6分

(Ⅱ)因?yàn)楹瘮?shù)在區(qū)間[-2,0]上單調(diào)遞增,所以導(dǎo)函數(shù)在區(qū)間

[-2,0]上的值恒大于或等于零,

                 ………………10分

,所以實(shí)數(shù)b的取值范圍為            …………12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年龍巖一中沖刺文)(本題滿分14分)已知函數(shù)(其中),

(1)求的取值范圍;

(2)方程有幾個(gè)實(shí)根?為什么?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年龍巖一中沖刺文)(12分)

如圖,梯形中,,,的中點(diǎn),將沿折起,使點(diǎn)折到點(diǎn)的位置,且二面角的大小為

(1)求證:

(2)求直線與平面所成角的大小

(3)求點(diǎn)到平面的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年龍巖一中沖刺理)(12分)

已知雙曲線的兩個(gè)焦點(diǎn)為,為動(dòng)點(diǎn),若為定值(其中>1),的最小值為.

(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ)設(shè)點(diǎn),過點(diǎn)作直線交軌跡,兩點(diǎn),判斷的大小是否為定值?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年龍巖一中沖刺理)(14分)

在直角坐標(biāo)平面xoy上的一列點(diǎn)簡記為,若由構(gòu)成的數(shù)列滿足其中是y軸正方向相同的單位向量,則為T點(diǎn)列.

(1)判斷是否為T點(diǎn)列,并說明理由;

(2)若為T點(diǎn)列,且點(diǎn)的右上方,任取其中連續(xù)三點(diǎn),判定的形狀(銳角三角形、直角三角形、鈍角三角形),并予以證明;

(3)若為T點(diǎn)列,正整數(shù)滿足.求證:

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年龍巖一中沖刺文)(12分)

已知O為坐標(biāo)原點(diǎn),,

(1)若,求的單調(diào)遞增區(qū)間;

(2)若的定義域?yàn)?IMG height=41 src='http://thumb.zyjl.cn/pic1/img/20090421/20090421173335006.gif' width=45>,值域?yàn)閇2,5],求a,b的值.

查看答案和解析>>

同步練習(xí)冊答案