已知數(shù)列{an}滿足a1=1,a2=-2,an+2=-,則該數(shù)列前26項(xiàng)的和為_(kāi)_______.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015屆高考蘇教數(shù)學(xué)(理)訓(xùn)練1 集合(解析版) 題型:填空題
已知M={a||a|≥2},A={a|(a-2)(a2-3)=0,a∈M},則集合A的子集共有________個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆高考數(shù)學(xué)(理)一輪總復(fù)習(xí)專題突破六 高考概率與統(tǒng)計(jì)(解析版) 題型:選擇題
簽盒中有編號(hào)為1,2,3,4,5,6的六支簽,從中任意取3支,設(shè)X為這3支簽的號(hào)碼之中最大的一個(gè),則X的數(shù)學(xué)期望為( )
A.5 B.5.25 C.5.8 D.4.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆高考數(shù)學(xué)(理)一輪總復(fù)習(xí)專題突破二 高考三角函數(shù)與平面向量(解析版) 題型:填空題
下列命題中真命題的編號(hào)是________.(填上所有正確的編號(hào))
①向量a與向量b共線,則存在實(shí)數(shù)λ使a=λb(λ∈R);
②a,b為單位向量,其夾角為θ,若|a-b|>1,則<θ≤π;
③A、B、C、D是空間不共面的四點(diǎn),若·=0,·=0,·=0,則△BCD一定是銳角三角形;
④向量,,滿足||=||+||,則與同向;
⑤若向量a∥b,b∥c,則a∥c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆高考數(shù)學(xué)(理)一輪總復(fù)習(xí)專題突破二 高考三角函數(shù)與平面向量(解析版) 題型:選擇題
在△ABC中,∠A,∠B,∠C的對(duì)邊分別為a,b,c.m=(bcos C,-1),n=((c-3a)cos B,1),且m∥n,則cos B的值為( )
A. B.- C. D.-
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆高考數(shù)學(xué)(理)一輪總復(fù)習(xí)專題突破三 高考數(shù)列(解析版) 題型:填空題
設(shè){lg an}成等差數(shù)列,公差d=lg 3,且{lg an}的前三項(xiàng)和為6lg 3,則{an}的通項(xiàng)公式為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆高考數(shù)學(xué)(理)一輪總復(fù)習(xí)專題突破一 高考函數(shù)與導(dǎo)數(shù)(解析版) 題型:填空題
已知函數(shù)f(x)=-x2+4x-3ln x在[t,t+1]上不單調(diào),則t的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆陜西省西安市高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
在一組樣本數(shù)據(jù)的散點(diǎn)圖中,若所有樣本點(diǎn)都在直線上,則這組樣本數(shù)據(jù)的樣本相關(guān)系數(shù)為_(kāi)______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆陜西省寶雞市金臺(tái)區(qū)高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
將字母排成三行兩列,要求每行的字母互不相同,每列的字母也互不相同,則不同的排列方法共有 種(用數(shù)字作答);
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com