分析 換元t=log2x,求得0≤t≤1,化簡(jiǎn)g(x)即為h(t)=t2+4t+2,0≤t≤1,求出對(duì)稱(chēng)軸t=-2,可得h(t)在[0,1]為增函數(shù),計(jì)算即可得答案.
解答 解:∵f(x)=1+log2x(1≤x≤4),
∴$\left\{\begin{array}{l}{1≤x≤4}\\{1≤{x}^{2}≤4}\end{array}\right.$,即1≤x≤2,
∵f(x)=1+log2x(1≤x≤4),
g(x)=f2(x)+f(x2)=(1+log2x)2+1+2log2x,
∴g(x)=(log2x)2+4log2x+2,1≤x≤2
設(shè)t=log2x,則h(t)=t2+4t+2,0≤t≤1,
∵對(duì)稱(chēng)軸t=-2,h(t)在[0,1]為增函數(shù),
∴g(x)的最小值為h(0)=2,最大值為h(1)=7
則g(x)max-g(x)min=7-2=5.
故答案為:5.
點(diǎn)評(píng) 本題考查函數(shù)的最值的求法,注意運(yùn)用換元法轉(zhuǎn)化為二次函數(shù)求值域問(wèn)題,注意自變量的范圍,同時(shí)考查對(duì)數(shù)函數(shù)的單調(diào)性的運(yùn)用,屬于中檔題和易錯(cuò)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①②③ | B. | ②③ | C. | ①③④ | D. | ①②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分 | ||
C. | 充要條件 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{20}$ | B. | $\frac{1}{10}$ | C. | 10 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
X | 1 | 2 | 3 | 4 |
Y | 51 | 48 | 45 | 42 |
Y | 51 | 48 | 45 | 42 |
頻數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com