【題目】在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為 (t為參數(shù)),直線(xiàn)的參數(shù)方程為 (為參數(shù)).設(shè)的交點(diǎn)為,當(dāng)變化時(shí),的軌跡為曲線(xiàn)

(1)寫(xiě)出的普通方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè),的交點(diǎn),求的極徑.

【答案】(1);(2).

【解析】

(1)分別消掉參數(shù)t與m可得直線(xiàn)l1與直線(xiàn)l2的普通方程為y=k(x-2)①與x=-2+ky②;聯(lián)立①②,消去k可得C的普通方程為x2-y2=4;

(2)將l的極坐標(biāo)方程與曲線(xiàn)C的極坐標(biāo)方程聯(lián)立,可得關(guān)于θ的方程,解得tanθ,即可求得l與C的交點(diǎn)M的極徑為ρ

(1)消去參數(shù)t,得l1的普通方程l1yk(x-2);

消去參數(shù)m,得l2的普通方程l2y (x+2). 設(shè)P(x,y),由題設(shè)得

消去k,得x2y2=4(y≠0),所以C的普通方程為x2y2=4(y≠0).

(2)C的極坐標(biāo)方程為ρ2(cos2θ-sin2θ)=4(0<θ<2π,θ≠π),

聯(lián)立得cos θ-sin θ=2(cos θ+sin θ).

故tan θ=-,從而cos2θ,sin2θ.

代入ρ2(cos2θ-sin2θ)=4,得ρ2=5,所以lC的交點(diǎn)M的極徑為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

(1)求函數(shù)的極值;

(2)設(shè),對(duì)于任意,總有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知8件不同的產(chǎn)品中有3件次品,現(xiàn)對(duì)它們一一進(jìn)行測(cè)試,直至找到所有次品.

(1)若恰在第2次測(cè)試時(shí),找到第一件次品,第6次測(cè)試時(shí),才找到最后一件次品,則共有多少種不同的測(cè)試方法?

(2)若至多測(cè)試5次就能找到所有次品,則共有多少種不同的測(cè)試方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題正確的是(

A.已知冪函數(shù)上單調(diào)遞減則

B.函數(shù)的有兩個(gè)零點(diǎn),一個(gè)大于0,一個(gè)小于0的一個(gè)充分不必要條件是

C.已知函數(shù),若,則的取值范圍為

D.已知函數(shù)滿(mǎn)足,且的圖像的交點(diǎn)為的值為8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,,,,,分別為線(xiàn)段上的點(diǎn),且.

(1)證明:

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,當(dāng)輸入的的值為4時(shí),輸出的的值為2,則空白判斷框中的條件可能為( ).

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的短軸長(zhǎng)為4,離心率為,斜率不為0的直線(xiàn)l與橢圓恒交于A,B兩點(diǎn),且以AB為直徑的圓過(guò)橢圓的右頂點(diǎn)M

1)求橢圓的標(biāo)準(zhǔn)方程;

2)直線(xiàn)l是否過(guò)定點(diǎn),如果過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo);如果不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)上存在導(dǎo)函數(shù),若,且時(shí),則不等式的解集為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如表提供了工廠技術(shù)改造后某種型號(hào)設(shè)備的使用年限和所支出的維修費(fèi)(萬(wàn)元)的幾組對(duì)照數(shù)據(jù):

(年)

2

3

4

5

6

(萬(wàn)元)

1

2.5

3

4

4.5

參考公式:,.

(1)若知道對(duì)呈線(xiàn)性相關(guān)關(guān)系,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線(xiàn)性回歸方程

(2)已知該工廠技術(shù)改造前該型號(hào)設(shè)備使用10年的維修費(fèi)用為9萬(wàn)元,試根據(jù)(1)求出的線(xiàn)性回歸方程,預(yù)測(cè)該型號(hào)設(shè)備技術(shù)改造后,使用10年的維修費(fèi)用能否比技術(shù)改造前降低?

查看答案和解析>>

同步練習(xí)冊(cè)答案