【題目】已知橢圓的中心在坐標(biāo)原點,左右焦點分別為,且橢圓經(jīng)過點.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過橢圓的右頂點作兩條相互垂直的直線,,分別與橢圓交于點(均異于點),求證:直線過定點,并求出該定點的坐標(biāo).

【答案】(1)(2)見證明

【解析】

1)利用橢圓的定義求得,根據(jù)焦點求得,結(jié)合求得,由此得到橢圓的標(biāo)準(zhǔn)方程.2)當(dāng)直線斜率存在時,設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,寫出判別式及韋達(dá)定理,利用列出方程,并由此化簡直線方程,得到直線所過定點.當(dāng)直線斜率不存在時,根據(jù)橢圓的對稱性,證得直線過定點.

(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為

,

所以,橢圓的標(biāo)準(zhǔn)方程為.

(2)①直線斜率存在,設(shè)直線,,聯(lián)立方程

消去,

,,

,

,

即,,∴,

.解得:

,,且均滿足,

當(dāng)時,直線的方程為,直線過定點,與已知矛盾;

當(dāng)時,直線的方程為,直線過定點.

②由橢圓的對稱性所得,當(dāng)直線,的傾斜角分別為,,易得直線

,直線,分別與橢圓交于點,此時直線斜率不存在,

也過定點

綜上所述,直線恒過定點

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形.謝爾賓斯基三角形是一種分形,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出.具體操作是取一個實心三角形,沿三角形的三邊中點連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復(fù)上述過程逐次得到各個圖形,如圖.

現(xiàn)在上述圖(3)中隨機(jī)選取一個點,則此點取自陰影部分的概率為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】兩名老師和五名學(xué)生站一排拍照.

1)五名學(xué)生必須排在一起共有多少種排法?

2)兩名老師不能相鄰共有多少種排法?

3)兩名老師不能排在兩邊共有多少種排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系.曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程,曲線的參數(shù)方程;

(2)若分別為曲線上的動點,求的最小值,并求取得最小值時,點的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電商在雙十一搞促銷活動,顧客購滿5件獲得積分30分(不足5件不積分),每多買2件再積20分(不足2件不積分),比如某顧客購買了12件,則可積90分.為了解顧客積分情況,該電商在某天隨機(jī)抽取了1000名顧客,統(tǒng)計了當(dāng)天他們的購物數(shù)額,并將樣本數(shù)據(jù)分為,,,,,九組,整理得到如圖頻率分布直方圖.

(1)求直方圖中的值;

(2)從當(dāng)天購物數(shù)額在的顧客中按分層抽樣的方式抽取6人.那么,從這6人中隨機(jī)抽取2人,則這2人積分之和不少于240分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時,,則下列命題正確的是(

A.當(dāng)時,

B.函數(shù)3個零點

C.的解集為

D.,都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點,焦距長,過點的直線交橢圓,兩點.

(1)求橢圓的方程;

(2)在軸上是否存在一點,使得為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是放置在桌面的某三棱柱的三視圖,其中網(wǎng)格小正方形邊長為1.若三棱柱表面上的兩點在三視圖中的對應(yīng)點為、,現(xiàn)一只螞蟻要沿該三棱柱的表面(不包括下底面)從爬到,則所有路徑里最短路徑的長度為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,圓.

1)若直線過點且到圓心的距離為,求直線的方程;

2)設(shè)過點的直線與圓交于兩點(的斜率為負(fù)),當(dāng)時,求以線段為直徑的圓的方程.

查看答案和解析>>

同步練習(xí)冊答案