已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R),則直線l和圓C的交點(diǎn)個(gè)數(shù)為
 
考點(diǎn):直線與圓的位置關(guān)系
專題:直線與圓
分析:由條件求得直線l經(jīng)過定點(diǎn)A(3,1),且A在圓的內(nèi)部,可得直線l和圓C相交.
解答: 解:直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R),即 (x+y-4)+m(2x+y-7)=0,
x+y-4=0
2x+y-7=0
求得
x=3
y=1
,可得直線l經(jīng)過定點(diǎn)A(3,1).
再根據(jù)AC=
4+1
=
5
,小于半徑,可得點(diǎn)A在圓C的內(nèi)部,故直線l和圓C相交,
故答案為:2.
點(diǎn)評:本題主要考查直線經(jīng)過定點(diǎn)問題,直線和圓的位置關(guān)系的判定,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=
1
2
AB=1,M是PB的任意一點(diǎn)
(1)證明面PAD⊥面PCD;
(2)若直線MC與面PCD所成角的余弦值為
3
10
10
,試求定點(diǎn)M的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=sinx+sin2x-cosx(x∈R)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x+2-3•4x且x2+x≤0,則其最大值和最小值分別是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4,直線l的參數(shù)方程為
x=a-2t
y=-4t
(t為參數(shù))
(1)求直線l和圓C的普通方程;
(2)若直線l與圓C有公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an},前n項(xiàng)和為Sn,a1+a2=
3
4
,a4+a5=6,則a6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知3x-3-x=
8
9
,求x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空間四邊形ABCD中,若AD⊥BC,AD⊥BD,那么有( 。
A、平面ABC⊥平面ADC
B、平面ABC⊥平面ADB
C、平面ABC⊥平面DBC
D、平面ADC⊥平面DBC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)三棱柱的三視圖如圖所示,則該三棱柱的表面積為( 。
A、4
5
+4
2
+5
B、2
5
+2
2
+
5
2
C、
2
5
+2
2
+3
3
D、2
5
+2
2
+3

查看答案和解析>>

同步練習(xí)冊答案